Improving Manual Tracking of Systems With Oscillatory Dynamics

This paper examines the manual control of systems with oscillatory dynamics. Tracking performance is improved by using input shaping to suppress command-induced oscillation. An operator study tested tracking behavior using controlled elements with both low-frequency (1.25 rad/s) and high-frequency (...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on human-machine systems Vol. 43; no. 1; pp. 46 - 52
Main Authors Potter, J. J., Singhose, W.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.01.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper examines the manual control of systems with oscillatory dynamics. Tracking performance is improved by using input shaping to suppress command-induced oscillation. An operator study tested tracking behavior using controlled elements with both low-frequency (1.25 rad/s) and high-frequency (5 rad/s) oscillatory modes. After each experimental trial, measures of tracking performance and subjective task difficulty were recorded, and frequency-domain control characteristics were computed. Results showed that the high-frequency oscillatory mode did not greatly decrease the tracking performance from the nonoscillatory case; thus, input shaping did not produce a significant improvement in the tracking performance. However, input shaping did cause a decrease in the average subjective task difficulty and made the system closely resemble McRuer's "crossover model." For the low-frequency case, the addition of input shaping significantly improved the tracking performance and reduced the tracking difficulty. These results demonstrate that input shaping can greatly improve the continuous tracking ability of human-machine systems that have oscillatory modes.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:2168-2291
2168-2305
DOI:10.1109/TSMCA.2012.2214031