Systemic thyroid hormone is necessary and sufficient to induce ultraviolet-sensitive cone loss in the juvenile rainbow trout retina

Rainbow trout possess ultraviolet-sensitive (UVS) cones in their retina that degenerate naturally during development. This phenomenon can be induced with exogenous thyroxine [T4, a thyroid hormone (TH)] treatment. However, the previous T4 exposure experiments employed static water immersion; a metho...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental biology Vol. 213; no. 3; pp. 493 - 501
Main Authors Raine, J C, Coffin, A B, Hawryshyn, C W
Format Journal Article
LanguageEnglish
Published England 01.02.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Rainbow trout possess ultraviolet-sensitive (UVS) cones in their retina that degenerate naturally during development. This phenomenon can be induced with exogenous thyroxine [T4, a thyroid hormone (TH)] treatment. However, the previous T4 exposure experiments employed static water immersion; a method that could introduce confounding stress effects on the fish. Because of this, it was uncertain if T4 alone was sufficient to induce retinal changes or if stress-related hormones were also necessary to initiate this process. Furthermore, it was unclear whether endogenous T4 was the factor responsible for initiating natural UVS cone loss during development. The current study examined the role of systemic T4 on the juvenile rainbow trout retina using a slow-release implant. Exogenous T4 treatment resulted in SWS1 opsin downregulation and UVS cone loss after four weeks of exposure, signifying that T4 is sufficient to induce this process. Blocking endogenous T4 production with propylthiouracil (PTU, an anti-thyroid agent) attenuated SWS1 downregulation and UVS cone loss in the retina of naturally developing rainbow trout, suggesting that endogenous T4 is necessary to initiate retinal remodelling during development. Quantitative real-time RT-PCR analysis demonstrated that several TH-regulating components are expressed in the trout retina, and that expression levels of the TH receptor isoform TRbeta and the type 2 deiodinase (D2) change with T4 treatment. This suggests that T4 may act directly on the retina to induce UVS cone loss. Taken together, these results demonstrate that systemic TH is necessary and sufficient to induce SWS1 opsin downregulation and UVS cone loss in the retina of juvenile rainbow trout.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-0949
1477-9145
DOI:10.1242/jeb.036301