An exact penalty approach for optimization with nonnegative orthogonality constraints

Optimization with nonnegative orthogonality constraints has wide applications in machine learning and data sciences. It is NP-hard due to some combinatorial properties of the constraints. We first propose an equivalent optimization formulation with nonnegative and multiple spherical constraints and...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 198; no. 1; pp. 855 - 897
Main Authors Jiang, Bo, Meng, Xiang, Wen, Zaiwen, Chen, Xiaojun
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2023
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Optimization with nonnegative orthogonality constraints has wide applications in machine learning and data sciences. It is NP-hard due to some combinatorial properties of the constraints. We first propose an equivalent optimization formulation with nonnegative and multiple spherical constraints and an additional single nonlinear constraint. Various constraint qualifications, the first- and second-order optimality conditions of the equivalent formulation are discussed. By establishing a local error bound of the feasible set, we design a class of (smooth) exact penalty models via keeping the nonnegative and multiple spherical constraints. The penalty models are exact if the penalty parameter is sufficiently large but finite. A practical penalty algorithm with postprocessing is then developed to approximately solve a series of subproblems with nonnegative and multiple spherical constraints. We study the asymptotic convergence and establish that any limit point is a weakly stationary point of the original problem and becomes a stationary point under some additional mild conditions. Extensive numerical results on the problem of computing the orthogonal projection onto nonnegative orthogonality constraints, the orthogonal nonnegative matrix factorization problems and the K-indicators model show the effectiveness of our proposed approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-022-01794-8