Modulation and Control for a New Hybrid Cascaded Multilevel Converter With DC Blocking Capability

The hybrid cascaded multilevel converter is a newly introduced voltage-source converter with dc blocking capability. It has two key parts, that is, the director switch (DS) made of insulated-gate bipolar transistors in series and the wave-shaping circuit (WSC) containing stacks of full-bridge submod...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power delivery Vol. 27; no. 4; pp. 2227 - 2237
Main Authors Xue, Yinglin, Xu, Zheng, Tu, Qingrui
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.10.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The hybrid cascaded multilevel converter is a newly introduced voltage-source converter with dc blocking capability. It has two key parts, that is, the director switch (DS) made of insulated-gate bipolar transistors in series and the wave-shaping circuit (WSC) containing stacks of full-bridge submodules (FSMs). This paper focuses on the modulation schemes of the DSs and the WSCs. First, to reduce switching losses of the DSs, a novel asymmetrical square-wave modulation at a very low frequency is proposed, and the energy flow of the WSC under this modulation is analyzed. Second, modified phase-shifted carrier-based pulsewidth modulation (PSC-PWM) is presented to determine the number of FSMs to be inserted or bypassed; and the specified FSMs to be fired are selected according to the capacitor voltage-balancing strategy. Third, the capability to limit the short-circuit current during the dc fault is investigated, and fast ac overcurrent protection is designed. The effectiveness of the modulation and control strategies is verified by PSCAD/EMTDC simulations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0885-8977
1937-4208
DOI:10.1109/TPWRD.2012.2207743