Application of Multivariate Empirical Mode Decomposition and Sample Entropy in EEG Signals via Artificial Neural Networks for Interpreting Depth of Anesthesia

EEG (Electroencephalography) signals can express the human awareness activities and consequently it can indicate the depth of anesthesia. On the other hand, Bispectral-index (BIS) is often used as an indicator to assess the depth of anesthesia. This study is aimed at using an advanced signal process...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 15; no. 9; pp. 3325 - 3339
Main Authors Huang, Jeng-Rung, Fan, Shou-Zen, Abbod, Maysam, Jen, Kuo-Kuang, Wu, Jeng-Fu, Shieh, Jiann-Shing
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:EEG (Electroencephalography) signals can express the human awareness activities and consequently it can indicate the depth of anesthesia. On the other hand, Bispectral-index (BIS) is often used as an indicator to assess the depth of anesthesia. This study is aimed at using an advanced signal processing method to analyze EEG signals and compare them with existing BIS indexes from a commercial product (i.e., IntelliVue MP60 BIS module). Multivariate empirical mode decomposition (MEMD) algorithm is utilized to filter the EEG signals. A combination of two MEMD components (IMF2 + IMF3) is used to express the raw EEG. Then, sample entropy algorithm is used to calculate the complexity of the patients’ EEG signal. Furthermore, linear regression and artificial neural network (ANN) methods were used to model the sample entropy using BIS index as the gold standard. ANN can produce better target value than linear regression. The correlation coefficient is 0.790 ± 0.069 and MAE is 8.448 ± 1.887. In conclusion, the area under the receiver operating characteristic (ROC) curve (AUC) of sample entropy value using ANN and MEMD is 0.969 ± 0.028 while the AUC of sample entropy value without filter is 0.733 ± 0.123. It means the MEMD method can filter out noise of the brain waves, so that the sample entropy of EEG can be closely related to the depth of anesthesia. Therefore, the resulting index can be adopted as the reference for the physician, in order to reduce the risk of surgery.
ISSN:1099-4300
1099-4300
DOI:10.3390/e15093325