Autonomous Navigation of UAVs in Large-Scale Complex Environments: A Deep Reinforcement Learning Approach
In this paper, we propose a deep reinforcement learning (DRL)-based method that allows unmanned aerial vehicles (UAVs) to execute navigation tasks in large-scale complex environments. This technique is important for many applications such as goods delivery and remote surveillance. The problem is for...
Saved in:
Published in | IEEE transactions on vehicular technology Vol. 68; no. 3; pp. 2124 - 2136 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we propose a deep reinforcement learning (DRL)-based method that allows unmanned aerial vehicles (UAVs) to execute navigation tasks in large-scale complex environments. This technique is important for many applications such as goods delivery and remote surveillance. The problem is formulated as a partially observable Markov decision process (POMDP) and solved by a novel online DRL algorithm designed based on two strictly proved policy gradient theorems within the actor-critic framework. In contrast to conventional simultaneous localization and mapping-based or sensing and avoidance-based approaches, our method directly maps UAVs' raw sensory measurements into control signals for navigation. Experiment results demonstrate that our method can enable UAVs to autonomously perform navigation in a virtual large-scale complex environment and can be generalized to more complex, larger-scale, and three-dimensional environments. Besides, the proposed online DRL algorithm addressing POMDPs outperforms the state-of-the-art. |
---|---|
AbstractList | In this paper, we propose a deep reinforcement learning (DRL)-based method that allows unmanned aerial vehicles (UAVs) to execute navigation tasks in large-scale complex environments. This technique is important for many applications such as goods delivery and remote surveillance. The problem is formulated as a partially observable Markov decision process (POMDP) and solved by a novel online DRL algorithm designed based on two strictly proved policy gradient theorems within the actor-critic framework. In contrast to conventional simultaneous localization and mapping-based or sensing and avoidance-based approaches, our method directly maps UAVs' raw sensory measurements into control signals for navigation. Experiment results demonstrate that our method can enable UAVs to autonomously perform navigation in a virtual large-scale complex environment and can be generalized to more complex, larger-scale, and three-dimensional environments. Besides, the proposed online DRL algorithm addressing POMDPs outperforms the state-of-the-art. |
Author | Shen, Yuan Wang, Jian Wang, Chao Zhang, Xudong |
Author_xml | – sequence: 1 givenname: Chao surname: Wang fullname: Wang, Chao email: w-c15@mails.tsinghua.edu.cn organization: Department of Electronic Engineering, Tsinghua University, Beijing, China – sequence: 2 givenname: Jian orcidid: 0000-0001-7683-6937 surname: Wang fullname: Wang, Jian email: jian-wang@tsinghua.edu.cn organization: Department of Electronic Engineering, Tsinghua University, Beijing, China – sequence: 3 givenname: Yuan orcidid: 0000-0002-9396-1964 surname: Shen fullname: Shen, Yuan email: shenyuan_ee@tsinghua.edu.cn organization: Department of Electronic Engineering, Tsinghua University, Beijing, China – sequence: 4 givenname: Xudong surname: Zhang fullname: Zhang, Xudong email: zhangxd@tsinghua.edu.cn organization: Department of Electronic Engineering, Tsinghua University, Beijing, China |
BookMark | eNp9kEtLAzEUhYNUsK3uBTcB11OTybzibqj1AYOCtt0OaeamprTJmEyL_ntTW1y4cHW5j3MP5xugnrEGELqkZEQp4TfT-XQUE1qM4oKTPGcnqE854xFnKe-hPgmriKdJeoYG3q9CmySc9pEut501dmO3Hj-LnV6KTluDrcKzcu6xNrgSbgnRmxRrwGO7adfwiSdmp501GzCdv8UlvgNo8Stoo6yTsB_jCoQz2ixx2bbOCvl-jk6VWHu4ONYhmt1PpuPHqHp5eBqXVSRZmneRaliIkzDS5CyTi4ItRKFUDguVszSTTJAmoY2iUEC6kDIPmQkUMZWgeBYLzobo-vA32H5swXf1ym6dCZZ1THlCs5SzJFyRw5V01nsHqm6d3gj3VVNS74HWAWi9B1ofgQZJ9kcidfeDq3NCr_8TXh2EGgB-fYqMEJZT9g2Ta4WR |
CODEN | ITVTAB |
CitedBy_id | crossref_primary_10_1109_TCOMM_2022_3148364 crossref_primary_10_3390_s23136190 crossref_primary_10_1002_ett_70111 crossref_primary_10_3390_drones7090549 crossref_primary_10_1109_JIOT_2021_3073973 crossref_primary_10_1051_bioconf_20249700010 crossref_primary_10_1109_ACCESS_2025_3529754 crossref_primary_10_1007_s11554_021_01185_w crossref_primary_10_1016_j_procs_2022_04_013 crossref_primary_10_3390_drones9010010 crossref_primary_10_1007_s10489_024_05679_5 crossref_primary_10_1155_2022_4115767 crossref_primary_10_1109_TII_2022_3226529 crossref_primary_10_1016_j_future_2024_07_038 crossref_primary_10_1115_1_4067718 crossref_primary_10_3390_drones8050173 crossref_primary_10_1142_S2301385023310027 crossref_primary_10_1007_s10846_022_01788_w crossref_primary_10_1016_j_engappai_2024_109108 crossref_primary_10_1360_SST_2023_0346 crossref_primary_10_1109_JIOT_2021_3079164 crossref_primary_10_1088_1742_6596_2506_1_012005 crossref_primary_10_1088_1742_6596_1958_1_012015 crossref_primary_10_1109_TVT_2019_2948953 crossref_primary_10_1016_j_geits_2023_100107 crossref_primary_10_1108_RIA_07_2024_0146 crossref_primary_10_3390_s19194332 crossref_primary_10_1007_s13042_023_01815_8 crossref_primary_10_1007_s42452_019_0872_y crossref_primary_10_1109_TMC_2020_3003639 crossref_primary_10_1016_j_knosys_2024_111604 crossref_primary_10_1109_JIOT_2020_2980198 crossref_primary_10_1155_2022_2650632 crossref_primary_10_1016_j_cja_2020_05_011 crossref_primary_10_1109_TAES_2023_3300813 crossref_primary_10_1109_TMC_2022_3200732 crossref_primary_10_1109_TIE_2022_3176301 crossref_primary_10_1016_j_cie_2022_108180 crossref_primary_10_3390_rs15020429 crossref_primary_10_1016_j_autcon_2023_105153 crossref_primary_10_1088_1742_6596_1820_1_012024 crossref_primary_10_3390_electronics9091465 crossref_primary_10_1109_TGCN_2021_3061631 crossref_primary_10_23919_JSEE_2024_000111 crossref_primary_10_3390_s21082848 crossref_primary_10_1016_j_fraope_2025_100239 crossref_primary_10_1016_j_sigpro_2023_108977 crossref_primary_10_1109_OJVT_2025_3540174 crossref_primary_10_3390_drones8020051 crossref_primary_10_1002_int_22778 crossref_primary_10_1109_JIOT_2021_3093116 crossref_primary_10_1007_s10462_021_09997_9 crossref_primary_10_1186_s40663_021_00290_3 crossref_primary_10_1109_TVT_2019_2952549 crossref_primary_10_3390_robotics13080117 crossref_primary_10_1109_TVT_2024_3399826 crossref_primary_10_1109_TVT_2021_3093449 crossref_primary_10_1109_TASE_2023_3322028 crossref_primary_10_1109_TNNLS_2024_3354061 crossref_primary_10_1360_SST_2021_0374 crossref_primary_10_1109_JIOT_2020_2973193 crossref_primary_10_1016_j_knosys_2024_112402 crossref_primary_10_1109_ACCESS_2021_3115805 crossref_primary_10_1109_TII_2021_3094207 crossref_primary_10_1007_s10489_024_05674_w crossref_primary_10_1109_JIOT_2021_3127873 crossref_primary_10_3390_drones8070315 crossref_primary_10_3390_drones8120720 crossref_primary_10_1002_rob_22325 crossref_primary_10_1109_TTE_2020_2983247 crossref_primary_10_1109_ACCESS_2022_3162702 crossref_primary_10_1016_j_isatra_2024_10_026 crossref_primary_10_1109_TVT_2020_3014788 crossref_primary_10_3390_electronics13214181 crossref_primary_10_2197_ipsjjip_31_562 crossref_primary_10_3390_jmse10070895 crossref_primary_10_1109_TAES_2023_3294889 crossref_primary_10_1109_TIV_2023_3342174 crossref_primary_10_3390_computers12030063 crossref_primary_10_1016_j_gmod_2021_101108 crossref_primary_10_1109_TKDE_2023_3301036 crossref_primary_10_1109_TVT_2022_3218855 crossref_primary_10_1103_PhysRevA_105_062443 crossref_primary_10_1109_TVT_2023_3266817 crossref_primary_10_3390_s20071890 crossref_primary_10_1007_s44196_021_00031_y crossref_primary_10_1109_TPDS_2024_3468892 crossref_primary_10_3390_drones8040116 crossref_primary_10_1109_TC_2021_3072072 crossref_primary_10_1007_s12559_024_10290_4 crossref_primary_10_1109_ACCESS_2020_2971780 crossref_primary_10_1016_j_oceaneng_2023_115018 crossref_primary_10_1109_TITS_2023_3248841 crossref_primary_10_3389_fncir_2022_839361 crossref_primary_10_1109_MIC_2021_3078346 crossref_primary_10_1016_j_ast_2022_107623 crossref_primary_10_1007_s10846_021_01491_2 crossref_primary_10_1109_ACCESS_2025_3540428 crossref_primary_10_1177_09544100241252233 crossref_primary_10_3390_rs12040640 crossref_primary_10_1109_TNSE_2024_3517872 crossref_primary_10_1109_TVT_2024_3453194 crossref_primary_10_1007_s10846_021_01489_w crossref_primary_10_1109_ACCESS_2024_3438792 crossref_primary_10_1109_TMC_2019_2908171 crossref_primary_10_3390_fi16110398 crossref_primary_10_3390_s25030639 crossref_primary_10_1109_ACCESS_2024_3433540 crossref_primary_10_1016_j_ast_2021_107052 crossref_primary_10_1109_TVT_2019_2922849 crossref_primary_10_3390_s21072534 crossref_primary_10_1186_s13677_020_00201_x crossref_primary_10_3233_JIFS_220693 crossref_primary_10_1109_TII_2024_3423464 crossref_primary_10_1109_TIP_2024_3430532 crossref_primary_10_1007_s11633_022_1405_5 crossref_primary_10_1016_j_neunet_2023_06_015 crossref_primary_10_3390_s21041108 crossref_primary_10_1016_j_ocecoaman_2023_106689 crossref_primary_10_1007_s10846_022_01601_8 crossref_primary_10_1007_s10846_021_01342_0 crossref_primary_10_1108_IR_01_2022_0026 crossref_primary_10_1109_TVT_2024_3389555 crossref_primary_10_1109_ACCESS_2021_3057485 crossref_primary_10_1109_TCCN_2020_3027696 crossref_primary_10_1109_ACCESS_2020_3022638 crossref_primary_10_1109_TMC_2024_3421541 crossref_primary_10_1017_aer_2021_85 crossref_primary_10_1109_TVT_2022_3184043 crossref_primary_10_1109_TIE_2020_2994866 crossref_primary_10_4108_eetiot_v8i29_987 crossref_primary_10_1109_TNNLS_2023_3245124 crossref_primary_10_3390_drones8090475 crossref_primary_10_3390_robotics12050133 crossref_primary_10_1109_JIOT_2020_3008299 crossref_primary_10_1108_RIA_01_2024_0011 crossref_primary_10_1109_OJCOMS_2024_3429198 crossref_primary_10_1109_ACCESS_2025_3526193 crossref_primary_10_1115_1_4049539 crossref_primary_10_1109_JIOT_2023_3327753 crossref_primary_10_1007_s10489_021_02825_1 crossref_primary_10_3390_s20226585 crossref_primary_10_55708_js0110008 crossref_primary_10_1109_TVT_2023_3330703 crossref_primary_10_1016_j_jnca_2020_102706 crossref_primary_10_3390_s19183837 crossref_primary_10_1109_OJVT_2021_3085421 crossref_primary_10_3390_aerospace11121040 crossref_primary_10_1109_TRO_2023_3315710 crossref_primary_10_1155_2022_4384954 crossref_primary_10_1109_TASE_2024_3395409 crossref_primary_10_1016_j_asoc_2021_108194 crossref_primary_10_1109_LRA_2024_3521179 crossref_primary_10_1109_ACCESS_2024_3454546 crossref_primary_10_1142_S2301385024420044 crossref_primary_10_3390_electronics13132432 crossref_primary_10_34133_space_0109 crossref_primary_10_1109_TSMC_2020_3020732 crossref_primary_10_1115_1_4064992 crossref_primary_10_1016_j_scs_2023_104653 crossref_primary_10_3390_rs14153776 crossref_primary_10_1109_TVT_2023_3285595 crossref_primary_10_3390_technologies13010035 crossref_primary_10_3390_s21186223 crossref_primary_10_1016_j_cja_2022_09_008 crossref_primary_10_1109_JIOT_2020_3000527 crossref_primary_10_3390_s23177411 crossref_primary_10_1109_OJCOMS_2021_3075201 crossref_primary_10_3389_frsc_2025_1561404 crossref_primary_10_3390_rs12223789 crossref_primary_10_1109_TVT_2021_3088129 crossref_primary_10_1109_ACCESS_2022_3157626 crossref_primary_10_1155_2022_9017079 crossref_primary_10_3233_JIFS_238335 crossref_primary_10_1109_TETC_2022_3202297 crossref_primary_10_1109_TASE_2024_3470810 crossref_primary_10_1109_TITS_2020_3039617 crossref_primary_10_1049_iet_com_2019_1184 crossref_primary_10_1016_j_engappai_2022_105468 crossref_primary_10_1109_TVT_2023_3278097 crossref_primary_10_1109_TIE_2020_3005071 crossref_primary_10_1109_TVT_2021_3119070 crossref_primary_10_3390_electronics11213628 crossref_primary_10_1109_TVT_2022_3205710 crossref_primary_10_1109_ACCESS_2022_3165937 crossref_primary_10_1177_09544054241256996 crossref_primary_10_1109_TMC_2020_2966989 crossref_primary_10_1016_j_sigpro_2023_109002 crossref_primary_10_1109_TVT_2020_3047800 crossref_primary_10_3389_frai_2024_1308031 crossref_primary_10_1002_aisy_202300697 crossref_primary_10_1109_ACCESS_2020_3001393 crossref_primary_10_1109_TNNLS_2023_3335416 crossref_primary_10_1016_j_asr_2023_03_014 crossref_primary_10_1109_TMC_2024_3382913 crossref_primary_10_1016_j_arcontrol_2022_04_006 crossref_primary_10_1109_OJVT_2024_3401024 crossref_primary_10_5802_roia_59 crossref_primary_10_1109_TMLCN_2024_3442771 crossref_primary_10_1109_TPEL_2020_2977765 crossref_primary_10_1007_s42979_023_02114_3 crossref_primary_10_1016_j_ast_2024_109575 crossref_primary_10_1016_j_trip_2024_101253 crossref_primary_10_1016_j_bspc_2022_104410 crossref_primary_10_1049_cje_2021_00_305 crossref_primary_10_1145_3560261 crossref_primary_10_1088_1742_6596_1873_1_012011 crossref_primary_10_1109_ACCESS_2021_3139080 crossref_primary_10_1109_TWC_2021_3106172 crossref_primary_10_1109_TSMC_2023_3257269 crossref_primary_10_3390_s19194192 crossref_primary_10_23919_JSEE_2022_000113 crossref_primary_10_1016_j_engappai_2022_105321 crossref_primary_10_1109_TIV_2023_3307134 crossref_primary_10_1016_j_isatra_2023_04_034 crossref_primary_10_1109_TVT_2023_3312495 crossref_primary_10_1109_OJVT_2023_3316181 crossref_primary_10_1109_TVT_2022_3232607 crossref_primary_10_1145_3570723 crossref_primary_10_1186_s43065_024_00098_9 crossref_primary_10_3390_robotics10020073 crossref_primary_10_2139_ssrn_4095698 crossref_primary_10_3390_machines10100856 crossref_primary_10_1109_TAES_2021_3056086 crossref_primary_10_3390_aerospace11110870 |
Cites_doi | 10.7148/2015-0499 10.1007/s10846-015-0292-1 10.1007/BF00992696 10.1109/TVT.2015.2388780 10.1016/j.sna.2012.11.017 10.1109/ACCESS.2015.2432455 10.1016/j.artint.2014.11.009 10.1109/GlobalSIP.2017.8309082 10.1177/0278364906065387 10.1016/j.ast.2012.11.012 10.1109/ICARCV.2016.7838739 10.1109/ICRA.2013.6630809 10.1007/s10846-013-9918-3 10.3390/s151229768 10.1109/ICUAS.2014.6842265 10.1109/ICCA.2016.7505408 10.1109/InertialSensors.2014.7049479 10.1109/ICRA.2014.6907839 10.1016/j.ast.2017.05.012 10.1177/0278364908098412 10.1109/TVT.2013.2243480 10.1109/TVT.2013.2238265 10.1109/IROS.2015.7354053 10.1145/1966407.1966411 10.1109/IVCNZ.2016.7804433 10.1038/nature14236 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
DOI | 10.1109/TVT.2018.2890773 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-9359 |
EndPage | 2136 |
ExternalDocumentID | 10_1109_TVT_2018_2890773 8600371 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2016YFB0100902 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c357t-fd3109430d736cb83ba8ff7ebf7356c3a0d41df1e8e5bcc72010e821cef962a93 |
IEDL.DBID | RIE |
ISSN | 0018-9545 |
IngestDate | Mon Jun 30 10:16:19 EDT 2025 Thu Apr 24 23:04:45 EDT 2025 Tue Jul 01 01:04:42 EDT 2025 Wed Aug 27 02:50:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-fd3109430d736cb83ba8ff7ebf7356c3a0d41df1e8e5bcc72010e821cef962a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7683-6937 0000-0002-9396-1964 |
PQID | 2194165934 |
PQPubID | 85454 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_TVT_2018_2890773 crossref_primary_10_1109_TVT_2018_2890773 ieee_primary_8600371 proquest_journals_2194165934 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on vehicular technology |
PublicationTitleAbbrev | TVT |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref11 ref10 ref2 ref1 ref17 silver (ref38) 0 ref16 lin (ref28) 1992 ref19 ref18 chrisman (ref27) 0 strydom (ref22) 0 wierstra (ref30) 0 jur?í?ek (ref31) 2011; 7 oguz (ref14) 2014; 9084 kingma (ref41) 0 ref24 harutyunyan (ref40) 0 ref23 ref26 heess (ref37) 2015 ref25 ref20 cerón (ref21) 0; 9406 sutton (ref42) 0 sutton (ref34) 1998; 1 wierstra (ref32) 0 ref29 ref8 ref7 mnih (ref33) 2015; 518 ref9 ref4 ref3 ref6 ref5 ng (ref39) 0; 99 lillicrap (ref35) 2015 konda (ref36) 0 |
References_xml | – ident: ref20 doi: 10.7148/2015-0499 – ident: ref10 doi: 10.1007/s10846-015-0292-1 – ident: ref29 doi: 10.1007/BF00992696 – volume: 1 year: 1998 ident: ref34 publication-title: Reinforcement Learning An Introduction – ident: ref16 doi: 10.1109/TVT.2015.2388780 – ident: ref3 doi: 10.1016/j.sna.2012.11.017 – ident: ref5 doi: 10.1109/ACCESS.2015.2432455 – ident: ref24 doi: 10.1016/j.artint.2014.11.009 – start-page: 697 year: 0 ident: ref30 article-title: Solving deep memory POMDPs with recurrent policy gradients publication-title: Proc Int Conf Artif Neural Netw – start-page: 466 year: 0 ident: ref32 article-title: Policy gradient critics publication-title: Proc Eur Conf Mach Learn – year: 1992 ident: ref28 article-title: Memory approaches to reinforcement learning in non-Markovian domains – ident: ref26 doi: 10.1109/GlobalSIP.2017.8309082 – ident: ref15 doi: 10.1177/0278364906065387 – volume: 99 start-page: 278 year: 0 ident: ref39 article-title: Policy invariance under reward transformations: Theory and application to reward shaping publication-title: Proc Int Conf Mach Learn – ident: ref17 doi: 10.1016/j.ast.2012.11.012 – volume: 9406 year: 0 ident: ref21 article-title: Visual based navigation for power line inspection by using virtual environments publication-title: Proc SPIE – year: 0 ident: ref41 article-title: Adam: A method for stochastic optimization publication-title: Proc Int Conf on Learning Rep – start-page: 1057 year: 0 ident: ref42 article-title: Policy gradient methods for reinforcement learning with function approximation publication-title: Proc Advances Neural Inf Process Syst – ident: ref25 doi: 10.1109/ICARCV.2016.7838739 – start-page: 1 year: 0 ident: ref22 article-title: Visual odometry: Autonomous UAV navigation using optic flow and stereo publication-title: Australas Conf Robot Autom – ident: ref23 doi: 10.1109/ICRA.2013.6630809 – volume: 9084 start-page: 5450 year: 2014 ident: ref14 article-title: On the consistency analysis of A-SLAM for UAV navigation publication-title: Proc SPIE – ident: ref13 doi: 10.1007/s10846-013-9918-3 – start-page: 2652 year: 0 ident: ref40 article-title: Expressing arbitrary reward functions as potential-based advice publication-title: Proc Assoc Advance Artif Intell – year: 2015 ident: ref37 article-title: Memory-based control with recurrent neural networks – ident: ref19 doi: 10.3390/s151229768 – ident: ref1 doi: 10.1109/ICUAS.2014.6842265 – ident: ref6 doi: 10.1109/ICCA.2016.7505408 – ident: ref12 doi: 10.1109/InertialSensors.2014.7049479 – start-page: 387 year: 0 ident: ref38 article-title: Deterministic policy gradient algorithms publication-title: Proc Int Conf Mach Learn – start-page: 183 year: 0 ident: ref27 article-title: Reinforcement learning with perceptual aliasing: The perceptual distinctions approach publication-title: Proc Assoc Advance Artif Intell – ident: ref2 doi: 10.1109/ICRA.2014.6907839 – start-page: 1008 year: 0 ident: ref36 article-title: Actor-critic algorithms publication-title: Proc Neural Inf Process Syst – ident: ref4 doi: 10.1016/j.ast.2017.05.012 – ident: ref18 doi: 10.1177/0278364908098412 – ident: ref9 doi: 10.1109/TVT.2013.2243480 – year: 2015 ident: ref35 article-title: Continuous control with deep reinforcement learning – ident: ref8 doi: 10.1109/TVT.2013.2238265 – ident: ref7 doi: 10.1109/IROS.2015.7354053 – volume: 7 start-page: 1 year: 2011 ident: ref31 article-title: Natural actor and belief critic: Reinforcement algorithm for learning parameters of dialogue systems modelled as POMDPs publication-title: ACM Trans Speech Lang Process doi: 10.1145/1966407.1966411 – ident: ref11 doi: 10.1109/IVCNZ.2016.7804433 – volume: 518 start-page: 529 year: 2015 ident: ref33 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 |
SSID | ssj0014491 |
Score | 2.672944 |
Snippet | In this paper, we propose a deep reinforcement learning (DRL)-based method that allows unmanned aerial vehicles (UAVs) to execute navigation tasks in... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2124 |
SubjectTerms | Aerospace electronics Algorithms Autonomous navigation deep reinforcement learning Markov analysis Markov processes Navigation partially observable Markov decision process Path planning Reinforcement learning Sensors Simultaneous localization and mapping Task complexity Unmanned aerial vehicles Virtual environments |
Title | Autonomous Navigation of UAVs in Large-Scale Complex Environments: A Deep Reinforcement Learning Approach |
URI | https://ieeexplore.ieee.org/document/8600371 https://www.proquest.com/docview/2194165934 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3ooBYq65SEfuCCR3SR24ri3CBatKuDQ7q72FtnOGCFQFpUsQv31tR3vikdV9ebD2LL02eMZz8w3AMdGFIzVnEdGpDyyoyRSqUkjJmqltTVJpW_TeXWdjybs-yybrcHpqhYGEX3yGfbd0Mfy67leuK-yQZF7hrl1WLeOW1ertYoYMBa64yX2AluzYBmSjMVgPB27HK6i74JqnNNXT5DvqfJOEfvX5WILrpb76pJK7vqLVvX17zeUjf-78U_wMZiZpOzOxTasYbMDH16QD-7CbbloXUWDdf3JtXzyVBvzhswNmZTTR3LbkEuXJR79tCgicXrjHp_J8EVh3DdSknPEB_IDPf-q9l-NJFC23pAy8JV_hsnFcHw2ikLjhUjTjLeRqR1fKKNxzWmuVUGVLIzhqAynWa6pjGuW1CbBAjOLKHcRdSzSRKMReSoF3YONZt7gFyDU2ocy57lkUjJulJXiiuZ1JoWhaZz1YLDEotKBldw1x7ivvHcSi8qiVzn0qoBeD05WMx46Ro5_yO46MFZyAYceHCzhrsKVfays6rbGaSYo-_r3WfuwadcWXQLaAWy0vxZ4aC2SVh35o_gHBCzcvQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1ReqA9QFtAbEuLD71UIrtJ7MRxbxEFbenuHsou4hbZzhghUBaVbIX49diOd0U_VPXmw1i29OyZsWfmDcBHIwrGas4jI1Ie2VESqdSkERO10tq6pNK36RxP8uGMnV5kF2twuKqFQUSffIZ9N_Sx_HquF-6rbFDknmHuGTy3dj9Lu2qtVcyAsdAfL7FX2Aosg5KxGEzPpy6Lq-i7sBrn9Bcj5Luq_KGKvX052YLxcmddWsl1f9Gqvn74jbTxf7f-CjaDo0nK7mS8hjVs3sDLJ_SD23BVLlpX02Af_2Qif3qyjXlD5obMyvM7ctWQkcsTj84sjkic5rjBe3L8pDTuMynJF8Rb8h09A6v2n40kkLZekjIwlu_A7OR4ejSMQuuFSNOMt5GpHWMoo3HNaa5VQZUsjOGoDKdZrqmMa5bUJsECM4spdzF1LNJEoxF5KgXdhfVm3uAeEGo9RJnzXDIpGTfKSnFF8zqTwtA0znowWGJR6cBL7tpj3FT-fRKLyqJXOfSqgF4PPq1m3HacHP-Q3XZgrOQCDj3YX8JdhUt7V1nlbd3TTFD29u-zDmBjOB2PqtHXybd38MKuI7p0tH1Yb38s8L31T1r1wR_LR7LY4Ac |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autonomous+Navigation+of+UAVs+in+Large-Scale+Complex+Environments%3A+A+Deep+Reinforcement+Learning+Approach&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Wang%2C+Chao&rft.au=Wang%2C+Jian&rft.au=Shen%2C+Yuan&rft.au=Zhang%2C+Xudong&rft.date=2019-03-01&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=68&rft.issue=3&rft.spage=2124&rft.epage=2136&rft_id=info:doi/10.1109%2FTVT.2018.2890773&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2018_2890773 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |