Autonomous Navigation of UAVs in Large-Scale Complex Environments: A Deep Reinforcement Learning Approach

In this paper, we propose a deep reinforcement learning (DRL)-based method that allows unmanned aerial vehicles (UAVs) to execute navigation tasks in large-scale complex environments. This technique is important for many applications such as goods delivery and remote surveillance. The problem is for...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 68; no. 3; pp. 2124 - 2136
Main Authors Wang, Chao, Wang, Jian, Shen, Yuan, Zhang, Xudong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose a deep reinforcement learning (DRL)-based method that allows unmanned aerial vehicles (UAVs) to execute navigation tasks in large-scale complex environments. This technique is important for many applications such as goods delivery and remote surveillance. The problem is formulated as a partially observable Markov decision process (POMDP) and solved by a novel online DRL algorithm designed based on two strictly proved policy gradient theorems within the actor-critic framework. In contrast to conventional simultaneous localization and mapping-based or sensing and avoidance-based approaches, our method directly maps UAVs' raw sensory measurements into control signals for navigation. Experiment results demonstrate that our method can enable UAVs to autonomously perform navigation in a virtual large-scale complex environment and can be generalized to more complex, larger-scale, and three-dimensional environments. Besides, the proposed online DRL algorithm addressing POMDPs outperforms the state-of-the-art.
AbstractList In this paper, we propose a deep reinforcement learning (DRL)-based method that allows unmanned aerial vehicles (UAVs) to execute navigation tasks in large-scale complex environments. This technique is important for many applications such as goods delivery and remote surveillance. The problem is formulated as a partially observable Markov decision process (POMDP) and solved by a novel online DRL algorithm designed based on two strictly proved policy gradient theorems within the actor-critic framework. In contrast to conventional simultaneous localization and mapping-based or sensing and avoidance-based approaches, our method directly maps UAVs' raw sensory measurements into control signals for navigation. Experiment results demonstrate that our method can enable UAVs to autonomously perform navigation in a virtual large-scale complex environment and can be generalized to more complex, larger-scale, and three-dimensional environments. Besides, the proposed online DRL algorithm addressing POMDPs outperforms the state-of-the-art.
Author Shen, Yuan
Wang, Jian
Wang, Chao
Zhang, Xudong
Author_xml – sequence: 1
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
  email: w-c15@mails.tsinghua.edu.cn
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Jian
  orcidid: 0000-0001-7683-6937
  surname: Wang
  fullname: Wang, Jian
  email: jian-wang@tsinghua.edu.cn
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Yuan
  orcidid: 0000-0002-9396-1964
  surname: Shen
  fullname: Shen, Yuan
  email: shenyuan_ee@tsinghua.edu.cn
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Xudong
  surname: Zhang
  fullname: Zhang, Xudong
  email: zhangxd@tsinghua.edu.cn
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
BookMark eNp9kEtLAzEUhYNUsK3uBTcB11OTybzibqj1AYOCtt0OaeamprTJmEyL_ntTW1y4cHW5j3MP5xugnrEGELqkZEQp4TfT-XQUE1qM4oKTPGcnqE854xFnKe-hPgmriKdJeoYG3q9CmySc9pEut501dmO3Hj-LnV6KTluDrcKzcu6xNrgSbgnRmxRrwGO7adfwiSdmp501GzCdv8UlvgNo8Stoo6yTsB_jCoQz2ixx2bbOCvl-jk6VWHu4ONYhmt1PpuPHqHp5eBqXVSRZmneRaliIkzDS5CyTi4ItRKFUDguVszSTTJAmoY2iUEC6kDIPmQkUMZWgeBYLzobo-vA32H5swXf1ym6dCZZ1THlCs5SzJFyRw5V01nsHqm6d3gj3VVNS74HWAWi9B1ofgQZJ9kcidfeDq3NCr_8TXh2EGgB-fYqMEJZT9g2Ta4WR
CODEN ITVTAB
CitedBy_id crossref_primary_10_1109_TCOMM_2022_3148364
crossref_primary_10_3390_s23136190
crossref_primary_10_1002_ett_70111
crossref_primary_10_3390_drones7090549
crossref_primary_10_1109_JIOT_2021_3073973
crossref_primary_10_1051_bioconf_20249700010
crossref_primary_10_1109_ACCESS_2025_3529754
crossref_primary_10_1007_s11554_021_01185_w
crossref_primary_10_1016_j_procs_2022_04_013
crossref_primary_10_3390_drones9010010
crossref_primary_10_1007_s10489_024_05679_5
crossref_primary_10_1155_2022_4115767
crossref_primary_10_1109_TII_2022_3226529
crossref_primary_10_1016_j_future_2024_07_038
crossref_primary_10_1115_1_4067718
crossref_primary_10_3390_drones8050173
crossref_primary_10_1142_S2301385023310027
crossref_primary_10_1007_s10846_022_01788_w
crossref_primary_10_1016_j_engappai_2024_109108
crossref_primary_10_1360_SST_2023_0346
crossref_primary_10_1109_JIOT_2021_3079164
crossref_primary_10_1088_1742_6596_2506_1_012005
crossref_primary_10_1088_1742_6596_1958_1_012015
crossref_primary_10_1109_TVT_2019_2948953
crossref_primary_10_1016_j_geits_2023_100107
crossref_primary_10_1108_RIA_07_2024_0146
crossref_primary_10_3390_s19194332
crossref_primary_10_1007_s13042_023_01815_8
crossref_primary_10_1007_s42452_019_0872_y
crossref_primary_10_1109_TMC_2020_3003639
crossref_primary_10_1016_j_knosys_2024_111604
crossref_primary_10_1109_JIOT_2020_2980198
crossref_primary_10_1155_2022_2650632
crossref_primary_10_1016_j_cja_2020_05_011
crossref_primary_10_1109_TAES_2023_3300813
crossref_primary_10_1109_TMC_2022_3200732
crossref_primary_10_1109_TIE_2022_3176301
crossref_primary_10_1016_j_cie_2022_108180
crossref_primary_10_3390_rs15020429
crossref_primary_10_1016_j_autcon_2023_105153
crossref_primary_10_1088_1742_6596_1820_1_012024
crossref_primary_10_3390_electronics9091465
crossref_primary_10_1109_TGCN_2021_3061631
crossref_primary_10_23919_JSEE_2024_000111
crossref_primary_10_3390_s21082848
crossref_primary_10_1016_j_fraope_2025_100239
crossref_primary_10_1016_j_sigpro_2023_108977
crossref_primary_10_1109_OJVT_2025_3540174
crossref_primary_10_3390_drones8020051
crossref_primary_10_1002_int_22778
crossref_primary_10_1109_JIOT_2021_3093116
crossref_primary_10_1007_s10462_021_09997_9
crossref_primary_10_1186_s40663_021_00290_3
crossref_primary_10_1109_TVT_2019_2952549
crossref_primary_10_3390_robotics13080117
crossref_primary_10_1109_TVT_2024_3399826
crossref_primary_10_1109_TVT_2021_3093449
crossref_primary_10_1109_TASE_2023_3322028
crossref_primary_10_1109_TNNLS_2024_3354061
crossref_primary_10_1360_SST_2021_0374
crossref_primary_10_1109_JIOT_2020_2973193
crossref_primary_10_1016_j_knosys_2024_112402
crossref_primary_10_1109_ACCESS_2021_3115805
crossref_primary_10_1109_TII_2021_3094207
crossref_primary_10_1007_s10489_024_05674_w
crossref_primary_10_1109_JIOT_2021_3127873
crossref_primary_10_3390_drones8070315
crossref_primary_10_3390_drones8120720
crossref_primary_10_1002_rob_22325
crossref_primary_10_1109_TTE_2020_2983247
crossref_primary_10_1109_ACCESS_2022_3162702
crossref_primary_10_1016_j_isatra_2024_10_026
crossref_primary_10_1109_TVT_2020_3014788
crossref_primary_10_3390_electronics13214181
crossref_primary_10_2197_ipsjjip_31_562
crossref_primary_10_3390_jmse10070895
crossref_primary_10_1109_TAES_2023_3294889
crossref_primary_10_1109_TIV_2023_3342174
crossref_primary_10_3390_computers12030063
crossref_primary_10_1016_j_gmod_2021_101108
crossref_primary_10_1109_TKDE_2023_3301036
crossref_primary_10_1109_TVT_2022_3218855
crossref_primary_10_1103_PhysRevA_105_062443
crossref_primary_10_1109_TVT_2023_3266817
crossref_primary_10_3390_s20071890
crossref_primary_10_1007_s44196_021_00031_y
crossref_primary_10_1109_TPDS_2024_3468892
crossref_primary_10_3390_drones8040116
crossref_primary_10_1109_TC_2021_3072072
crossref_primary_10_1007_s12559_024_10290_4
crossref_primary_10_1109_ACCESS_2020_2971780
crossref_primary_10_1016_j_oceaneng_2023_115018
crossref_primary_10_1109_TITS_2023_3248841
crossref_primary_10_3389_fncir_2022_839361
crossref_primary_10_1109_MIC_2021_3078346
crossref_primary_10_1016_j_ast_2022_107623
crossref_primary_10_1007_s10846_021_01491_2
crossref_primary_10_1109_ACCESS_2025_3540428
crossref_primary_10_1177_09544100241252233
crossref_primary_10_3390_rs12040640
crossref_primary_10_1109_TNSE_2024_3517872
crossref_primary_10_1109_TVT_2024_3453194
crossref_primary_10_1007_s10846_021_01489_w
crossref_primary_10_1109_ACCESS_2024_3438792
crossref_primary_10_1109_TMC_2019_2908171
crossref_primary_10_3390_fi16110398
crossref_primary_10_3390_s25030639
crossref_primary_10_1109_ACCESS_2024_3433540
crossref_primary_10_1016_j_ast_2021_107052
crossref_primary_10_1109_TVT_2019_2922849
crossref_primary_10_3390_s21072534
crossref_primary_10_1186_s13677_020_00201_x
crossref_primary_10_3233_JIFS_220693
crossref_primary_10_1109_TII_2024_3423464
crossref_primary_10_1109_TIP_2024_3430532
crossref_primary_10_1007_s11633_022_1405_5
crossref_primary_10_1016_j_neunet_2023_06_015
crossref_primary_10_3390_s21041108
crossref_primary_10_1016_j_ocecoaman_2023_106689
crossref_primary_10_1007_s10846_022_01601_8
crossref_primary_10_1007_s10846_021_01342_0
crossref_primary_10_1108_IR_01_2022_0026
crossref_primary_10_1109_TVT_2024_3389555
crossref_primary_10_1109_ACCESS_2021_3057485
crossref_primary_10_1109_TCCN_2020_3027696
crossref_primary_10_1109_ACCESS_2020_3022638
crossref_primary_10_1109_TMC_2024_3421541
crossref_primary_10_1017_aer_2021_85
crossref_primary_10_1109_TVT_2022_3184043
crossref_primary_10_1109_TIE_2020_2994866
crossref_primary_10_4108_eetiot_v8i29_987
crossref_primary_10_1109_TNNLS_2023_3245124
crossref_primary_10_3390_drones8090475
crossref_primary_10_3390_robotics12050133
crossref_primary_10_1109_JIOT_2020_3008299
crossref_primary_10_1108_RIA_01_2024_0011
crossref_primary_10_1109_OJCOMS_2024_3429198
crossref_primary_10_1109_ACCESS_2025_3526193
crossref_primary_10_1115_1_4049539
crossref_primary_10_1109_JIOT_2023_3327753
crossref_primary_10_1007_s10489_021_02825_1
crossref_primary_10_3390_s20226585
crossref_primary_10_55708_js0110008
crossref_primary_10_1109_TVT_2023_3330703
crossref_primary_10_1016_j_jnca_2020_102706
crossref_primary_10_3390_s19183837
crossref_primary_10_1109_OJVT_2021_3085421
crossref_primary_10_3390_aerospace11121040
crossref_primary_10_1109_TRO_2023_3315710
crossref_primary_10_1155_2022_4384954
crossref_primary_10_1109_TASE_2024_3395409
crossref_primary_10_1016_j_asoc_2021_108194
crossref_primary_10_1109_LRA_2024_3521179
crossref_primary_10_1109_ACCESS_2024_3454546
crossref_primary_10_1142_S2301385024420044
crossref_primary_10_3390_electronics13132432
crossref_primary_10_34133_space_0109
crossref_primary_10_1109_TSMC_2020_3020732
crossref_primary_10_1115_1_4064992
crossref_primary_10_1016_j_scs_2023_104653
crossref_primary_10_3390_rs14153776
crossref_primary_10_1109_TVT_2023_3285595
crossref_primary_10_3390_technologies13010035
crossref_primary_10_3390_s21186223
crossref_primary_10_1016_j_cja_2022_09_008
crossref_primary_10_1109_JIOT_2020_3000527
crossref_primary_10_3390_s23177411
crossref_primary_10_1109_OJCOMS_2021_3075201
crossref_primary_10_3389_frsc_2025_1561404
crossref_primary_10_3390_rs12223789
crossref_primary_10_1109_TVT_2021_3088129
crossref_primary_10_1109_ACCESS_2022_3157626
crossref_primary_10_1155_2022_9017079
crossref_primary_10_3233_JIFS_238335
crossref_primary_10_1109_TETC_2022_3202297
crossref_primary_10_1109_TASE_2024_3470810
crossref_primary_10_1109_TITS_2020_3039617
crossref_primary_10_1049_iet_com_2019_1184
crossref_primary_10_1016_j_engappai_2022_105468
crossref_primary_10_1109_TVT_2023_3278097
crossref_primary_10_1109_TIE_2020_3005071
crossref_primary_10_1109_TVT_2021_3119070
crossref_primary_10_3390_electronics11213628
crossref_primary_10_1109_TVT_2022_3205710
crossref_primary_10_1109_ACCESS_2022_3165937
crossref_primary_10_1177_09544054241256996
crossref_primary_10_1109_TMC_2020_2966989
crossref_primary_10_1016_j_sigpro_2023_109002
crossref_primary_10_1109_TVT_2020_3047800
crossref_primary_10_3389_frai_2024_1308031
crossref_primary_10_1002_aisy_202300697
crossref_primary_10_1109_ACCESS_2020_3001393
crossref_primary_10_1109_TNNLS_2023_3335416
crossref_primary_10_1016_j_asr_2023_03_014
crossref_primary_10_1109_TMC_2024_3382913
crossref_primary_10_1016_j_arcontrol_2022_04_006
crossref_primary_10_1109_OJVT_2024_3401024
crossref_primary_10_5802_roia_59
crossref_primary_10_1109_TMLCN_2024_3442771
crossref_primary_10_1109_TPEL_2020_2977765
crossref_primary_10_1007_s42979_023_02114_3
crossref_primary_10_1016_j_ast_2024_109575
crossref_primary_10_1016_j_trip_2024_101253
crossref_primary_10_1016_j_bspc_2022_104410
crossref_primary_10_1049_cje_2021_00_305
crossref_primary_10_1145_3560261
crossref_primary_10_1088_1742_6596_1873_1_012011
crossref_primary_10_1109_ACCESS_2021_3139080
crossref_primary_10_1109_TWC_2021_3106172
crossref_primary_10_1109_TSMC_2023_3257269
crossref_primary_10_3390_s19194192
crossref_primary_10_23919_JSEE_2022_000113
crossref_primary_10_1016_j_engappai_2022_105321
crossref_primary_10_1109_TIV_2023_3307134
crossref_primary_10_1016_j_isatra_2023_04_034
crossref_primary_10_1109_TVT_2023_3312495
crossref_primary_10_1109_OJVT_2023_3316181
crossref_primary_10_1109_TVT_2022_3232607
crossref_primary_10_1145_3570723
crossref_primary_10_1186_s43065_024_00098_9
crossref_primary_10_3390_robotics10020073
crossref_primary_10_2139_ssrn_4095698
crossref_primary_10_3390_machines10100856
crossref_primary_10_1109_TAES_2021_3056086
crossref_primary_10_3390_aerospace11110870
Cites_doi 10.7148/2015-0499
10.1007/s10846-015-0292-1
10.1007/BF00992696
10.1109/TVT.2015.2388780
10.1016/j.sna.2012.11.017
10.1109/ACCESS.2015.2432455
10.1016/j.artint.2014.11.009
10.1109/GlobalSIP.2017.8309082
10.1177/0278364906065387
10.1016/j.ast.2012.11.012
10.1109/ICARCV.2016.7838739
10.1109/ICRA.2013.6630809
10.1007/s10846-013-9918-3
10.3390/s151229768
10.1109/ICUAS.2014.6842265
10.1109/ICCA.2016.7505408
10.1109/InertialSensors.2014.7049479
10.1109/ICRA.2014.6907839
10.1016/j.ast.2017.05.012
10.1177/0278364908098412
10.1109/TVT.2013.2243480
10.1109/TVT.2013.2238265
10.1109/IROS.2015.7354053
10.1145/1966407.1966411
10.1109/IVCNZ.2016.7804433
10.1038/nature14236
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2018.2890773
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 2136
ExternalDocumentID 10_1109_TVT_2018_2890773
8600371
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2016YFB0100902
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c357t-fd3109430d736cb83ba8ff7ebf7356c3a0d41df1e8e5bcc72010e821cef962a93
IEDL.DBID RIE
ISSN 0018-9545
IngestDate Mon Jun 30 10:16:19 EDT 2025
Thu Apr 24 23:04:45 EDT 2025
Tue Jul 01 01:04:42 EDT 2025
Wed Aug 27 02:50:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-fd3109430d736cb83ba8ff7ebf7356c3a0d41df1e8e5bcc72010e821cef962a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7683-6937
0000-0002-9396-1964
PQID 2194165934
PQPubID 85454
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TVT_2018_2890773
crossref_primary_10_1109_TVT_2018_2890773
ieee_primary_8600371
proquest_journals_2194165934
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref11
ref10
ref2
ref1
ref17
silver (ref38) 0
ref16
lin (ref28) 1992
ref19
ref18
chrisman (ref27) 0
strydom (ref22) 0
wierstra (ref30) 0
jur?í?ek (ref31) 2011; 7
oguz (ref14) 2014; 9084
kingma (ref41) 0
ref24
harutyunyan (ref40) 0
ref23
ref26
heess (ref37) 2015
ref25
ref20
cerón (ref21) 0; 9406
sutton (ref42) 0
sutton (ref34) 1998; 1
wierstra (ref32) 0
ref29
ref8
ref7
mnih (ref33) 2015; 518
ref9
ref4
ref3
ref6
ref5
ng (ref39) 0; 99
lillicrap (ref35) 2015
konda (ref36) 0
References_xml – ident: ref20
  doi: 10.7148/2015-0499
– ident: ref10
  doi: 10.1007/s10846-015-0292-1
– ident: ref29
  doi: 10.1007/BF00992696
– volume: 1
  year: 1998
  ident: ref34
  publication-title: Reinforcement Learning An Introduction
– ident: ref16
  doi: 10.1109/TVT.2015.2388780
– ident: ref3
  doi: 10.1016/j.sna.2012.11.017
– ident: ref5
  doi: 10.1109/ACCESS.2015.2432455
– ident: ref24
  doi: 10.1016/j.artint.2014.11.009
– start-page: 697
  year: 0
  ident: ref30
  article-title: Solving deep memory POMDPs with recurrent policy gradients
  publication-title: Proc Int Conf Artif Neural Netw
– start-page: 466
  year: 0
  ident: ref32
  article-title: Policy gradient critics
  publication-title: Proc Eur Conf Mach Learn
– year: 1992
  ident: ref28
  article-title: Memory approaches to reinforcement learning in non-Markovian domains
– ident: ref26
  doi: 10.1109/GlobalSIP.2017.8309082
– ident: ref15
  doi: 10.1177/0278364906065387
– volume: 99
  start-page: 278
  year: 0
  ident: ref39
  article-title: Policy invariance under reward transformations: Theory and application to reward shaping
  publication-title: Proc Int Conf Mach Learn
– ident: ref17
  doi: 10.1016/j.ast.2012.11.012
– volume: 9406
  year: 0
  ident: ref21
  article-title: Visual based navigation for power line inspection by using virtual environments
  publication-title: Proc SPIE
– year: 0
  ident: ref41
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf on Learning Rep
– start-page: 1057
  year: 0
  ident: ref42
  article-title: Policy gradient methods for reinforcement learning with function approximation
  publication-title: Proc Advances Neural Inf Process Syst
– ident: ref25
  doi: 10.1109/ICARCV.2016.7838739
– start-page: 1
  year: 0
  ident: ref22
  article-title: Visual odometry: Autonomous UAV navigation using optic flow and stereo
  publication-title: Australas Conf Robot Autom
– ident: ref23
  doi: 10.1109/ICRA.2013.6630809
– volume: 9084
  start-page: 5450
  year: 2014
  ident: ref14
  article-title: On the consistency analysis of A-SLAM for UAV navigation
  publication-title: Proc SPIE
– ident: ref13
  doi: 10.1007/s10846-013-9918-3
– start-page: 2652
  year: 0
  ident: ref40
  article-title: Expressing arbitrary reward functions as potential-based advice
  publication-title: Proc Assoc Advance Artif Intell
– year: 2015
  ident: ref37
  article-title: Memory-based control with recurrent neural networks
– ident: ref19
  doi: 10.3390/s151229768
– ident: ref1
  doi: 10.1109/ICUAS.2014.6842265
– ident: ref6
  doi: 10.1109/ICCA.2016.7505408
– ident: ref12
  doi: 10.1109/InertialSensors.2014.7049479
– start-page: 387
  year: 0
  ident: ref38
  article-title: Deterministic policy gradient algorithms
  publication-title: Proc Int Conf Mach Learn
– start-page: 183
  year: 0
  ident: ref27
  article-title: Reinforcement learning with perceptual aliasing: The perceptual distinctions approach
  publication-title: Proc Assoc Advance Artif Intell
– ident: ref2
  doi: 10.1109/ICRA.2014.6907839
– start-page: 1008
  year: 0
  ident: ref36
  article-title: Actor-critic algorithms
  publication-title: Proc Neural Inf Process Syst
– ident: ref4
  doi: 10.1016/j.ast.2017.05.012
– ident: ref18
  doi: 10.1177/0278364908098412
– ident: ref9
  doi: 10.1109/TVT.2013.2243480
– year: 2015
  ident: ref35
  article-title: Continuous control with deep reinforcement learning
– ident: ref8
  doi: 10.1109/TVT.2013.2238265
– ident: ref7
  doi: 10.1109/IROS.2015.7354053
– volume: 7
  start-page: 1
  year: 2011
  ident: ref31
  article-title: Natural actor and belief critic: Reinforcement algorithm for learning parameters of dialogue systems modelled as POMDPs
  publication-title: ACM Trans Speech Lang Process
  doi: 10.1145/1966407.1966411
– ident: ref11
  doi: 10.1109/IVCNZ.2016.7804433
– volume: 518
  start-page: 529
  year: 2015
  ident: ref33
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
SSID ssj0014491
Score 2.672944
Snippet In this paper, we propose a deep reinforcement learning (DRL)-based method that allows unmanned aerial vehicles (UAVs) to execute navigation tasks in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2124
SubjectTerms Aerospace electronics
Algorithms
Autonomous navigation
deep reinforcement learning
Markov analysis
Markov processes
Navigation
partially observable Markov decision process
Path planning
Reinforcement learning
Sensors
Simultaneous localization and mapping
Task complexity
Unmanned aerial vehicles
Virtual environments
Title Autonomous Navigation of UAVs in Large-Scale Complex Environments: A Deep Reinforcement Learning Approach
URI https://ieeexplore.ieee.org/document/8600371
https://www.proquest.com/docview/2194165934
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3ooBYq65SEfuCCR3SR24ri3CBatKuDQ7q72FtnOGCFQFpUsQv31tR3vikdV9ebD2LL02eMZz8w3AMdGFIzVnEdGpDyyoyRSqUkjJmqltTVJpW_TeXWdjybs-yybrcHpqhYGEX3yGfbd0Mfy67leuK-yQZF7hrl1WLeOW1ertYoYMBa64yX2AluzYBmSjMVgPB27HK6i74JqnNNXT5DvqfJOEfvX5WILrpb76pJK7vqLVvX17zeUjf-78U_wMZiZpOzOxTasYbMDH16QD-7CbbloXUWDdf3JtXzyVBvzhswNmZTTR3LbkEuXJR79tCgicXrjHp_J8EVh3DdSknPEB_IDPf-q9l-NJFC23pAy8JV_hsnFcHw2ikLjhUjTjLeRqR1fKKNxzWmuVUGVLIzhqAynWa6pjGuW1CbBAjOLKHcRdSzSRKMReSoF3YONZt7gFyDU2ocy57lkUjJulJXiiuZ1JoWhaZz1YLDEotKBldw1x7ivvHcSi8qiVzn0qoBeD05WMx46Ro5_yO46MFZyAYceHCzhrsKVfays6rbGaSYo-_r3WfuwadcWXQLaAWy0vxZ4aC2SVh35o_gHBCzcvQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1ReqA9QFtAbEuLD71UIrtJ7MRxbxEFbenuHsou4hbZzhghUBaVbIX49diOd0U_VPXmw1i29OyZsWfmDcBHIwrGas4jI1Ie2VESqdSkERO10tq6pNK36RxP8uGMnV5kF2twuKqFQUSffIZ9N_Sx_HquF-6rbFDknmHuGTy3dj9Lu2qtVcyAsdAfL7FX2Aosg5KxGEzPpy6Lq-i7sBrn9Bcj5Luq_KGKvX052YLxcmddWsl1f9Gqvn74jbTxf7f-CjaDo0nK7mS8hjVs3sDLJ_SD23BVLlpX02Af_2Qif3qyjXlD5obMyvM7ctWQkcsTj84sjkic5rjBe3L8pDTuMynJF8Rb8h09A6v2n40kkLZekjIwlu_A7OR4ejSMQuuFSNOMt5GpHWMoo3HNaa5VQZUsjOGoDKdZrqmMa5bUJsECM4spdzF1LNJEoxF5KgXdhfVm3uAeEGo9RJnzXDIpGTfKSnFF8zqTwtA0znowWGJR6cBL7tpj3FT-fRKLyqJXOfSqgF4PPq1m3HacHP-Q3XZgrOQCDj3YX8JdhUt7V1nlbd3TTFD29u-zDmBjOB2PqtHXybd38MKuI7p0tH1Yb38s8L31T1r1wR_LR7LY4Ac
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autonomous+Navigation+of+UAVs+in+Large-Scale+Complex+Environments%3A+A+Deep+Reinforcement+Learning+Approach&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Wang%2C+Chao&rft.au=Wang%2C+Jian&rft.au=Shen%2C+Yuan&rft.au=Zhang%2C+Xudong&rft.date=2019-03-01&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=68&rft.issue=3&rft.spage=2124&rft.epage=2136&rft_id=info:doi/10.1109%2FTVT.2018.2890773&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2018_2890773
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon