Autonomous Navigation of UAVs in Large-Scale Complex Environments: A Deep Reinforcement Learning Approach
In this paper, we propose a deep reinforcement learning (DRL)-based method that allows unmanned aerial vehicles (UAVs) to execute navigation tasks in large-scale complex environments. This technique is important for many applications such as goods delivery and remote surveillance. The problem is for...
Saved in:
Published in | IEEE transactions on vehicular technology Vol. 68; no. 3; pp. 2124 - 2136 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we propose a deep reinforcement learning (DRL)-based method that allows unmanned aerial vehicles (UAVs) to execute navigation tasks in large-scale complex environments. This technique is important for many applications such as goods delivery and remote surveillance. The problem is formulated as a partially observable Markov decision process (POMDP) and solved by a novel online DRL algorithm designed based on two strictly proved policy gradient theorems within the actor-critic framework. In contrast to conventional simultaneous localization and mapping-based or sensing and avoidance-based approaches, our method directly maps UAVs' raw sensory measurements into control signals for navigation. Experiment results demonstrate that our method can enable UAVs to autonomously perform navigation in a virtual large-scale complex environment and can be generalized to more complex, larger-scale, and three-dimensional environments. Besides, the proposed online DRL algorithm addressing POMDPs outperforms the state-of-the-art. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9545 1939-9359 |
DOI: | 10.1109/TVT.2018.2890773 |