Micro-homogeneity studies of boron carbide powders

We have studied the micro-homogeneity of boron carbide powders by inductively coupled plasma optical emission spectrometry (ICP-OES) and total reflection X-ray fluorescence spectrometry (TXRF) using slurry sampling. To get information on the particle size distributions of the powders, the stabilized...

Full description

Saved in:
Bibliographic Details
Published inMikrochimica acta (1966) Vol. 173; no. 1-2; pp. 183 - 188
Main Authors Kadenkin, Alexander, Amberger, Martin, Fittschen, Ursula E. A., Broekaert, José A. C.
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.04.2011
Springer
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We have studied the micro-homogeneity of boron carbide powders by inductively coupled plasma optical emission spectrometry (ICP-OES) and total reflection X-ray fluorescence spectrometry (TXRF) using slurry sampling. To get information on the particle size distributions of the powders, the stabilized slurries of boron carbide powders were nebulized, the aerosols were transported into a Batelle impactor and the droplets were collected on the impactor stages bearing TXRF sample holders. In a first series of measurements, parameters of the impaction like the duration of the impaction and the use of glutinous substance on the sample holders were optimized. The different mass size fractions for industrial boron carbide powders were determined by weight measurements of the fractions collected on the different stages. The established particle size distributions were in the range of 0.5 to >16 μm and found similar to those determined by laser diffraction reported elsewhere. Analyses of the mass fractions by slurry sampling TXRF showed that Ca, Ti, Cr, Mn, Fe, Ni and Cu within the measurements errors were homogeneously distributed over the mass fractions between 0.5 and 4 μm and that their concentrations agreed with the bulk composition, as determined with ICP-OES subsequent to digestion. However, light underestimates were found at the 5 (Mn) up to 150 μg g −1 (Fe) level. Finally, boron carbide powders were washed out with nitric acid with different concentrations and leaching solutions and the residues were analyzed by ICP-OES and TXRF respectively. It is shown that up to 60% of the residual trace impurities in the powder studied can be removed by leaching with 34% ( v/v ) of nitric acid. Figure The trace element concentrations over different particle size fractions in boron carbide powders could be shown by total reflection x-ray fluorescence spectrometric measurements at the cascade impactor separated fractions not to vary too much over the different fractions.
ISSN:0026-3672
1436-5073
DOI:10.1007/s00604-011-0546-y