Thermally Controlled Onset of Spatially Incoherent Emission in a Broad-Area Vertical-Cavity Surface-Emitting Laser

We present an experimental study of the physical process that leads to spatially incoherent, nonmodal emission in broad-area vertical-cavity surface-emitting lasers. We show that this special emission regime that occurs in pulsed operation of these lasers is due to a combination of a spatially distr...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in quantum electronics Vol. 15; no. 3; pp. 555 - 562
Main Authors Craggs, G., Verschaffelt, G., Mandre, S.K., Thienpont, H., Fischer, I.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present an experimental study of the physical process that leads to spatially incoherent, nonmodal emission in broad-area vertical-cavity surface-emitting lasers. We show that this special emission regime that occurs in pulsed operation of these lasers is due to a combination of a spatially distributed thermal or refractive index gradient (thermal lens) and thermal expansion of the cavity during the pulse (thermal chirp). Our measurements are based on preinstalling a thermal lens through a current bias, and subsequently, modulating a pulse onto the bias. This approach allows us to independently investigate the role of both thermal effects in the onset of nonmodal emission.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1077-260X
1558-4542
DOI:10.1109/JSTQE.2009.2016355