Data-Driven Control of Soft Robots Using Koopman Operator Theory

Controlling soft robots with precision is a challenge due to the difficulty of constructing models that are amenable to model-based control design techniques. Koopman operator theory offers a way to construct explicit dynamical models of soft robots and to control them using established model-based...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on robotics Vol. 37; no. 3; pp. 948 - 961
Main Authors Bruder, Daniel, Fu, Xun, Gillespie, R. Brent, Remy, C. David, Vasudevan, Ram
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Controlling soft robots with precision is a challenge due to the difficulty of constructing models that are amenable to model-based control design techniques. Koopman operator theory offers a way to construct explicit dynamical models of soft robots and to control them using established model-based control methods. This approach is data driven, yet yields an explicit control-oriented model rather than just a "black-box" input-output mapping. This work describes a Koopman-based system identification method and its application to model predictive control (MPC) design for soft robots. Three MPC controllers are developed for a pneumatic soft robot arm via the Koopman-based approach, and their performances are evaluated with respect to several real-world trajectory following tasks. In terms of average tracking error, these Koopman-based controllers are more than three times more accurate than a benchmark MPC controller based on a linear state-space model of the same system, demonstrating the utility of the Koopman approach in controlling real soft robots.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2020.3038693