POP-1 controls axis formation during early gonadogenesis in C. elegans

The shape and polarity of the C. elegans gonad is defined during early gonadogenesis by two somatic gonadal precursor cells, Z1 and Z4, and their descendants. Z1 and Z4 divide asymmetrically to establish the proximal-distal axes of the gonad and to generate regulatory leader cells that control organ...

Full description

Saved in:
Bibliographic Details
Published inDevelopment (Cambridge) Vol. 129; no. 2; pp. 443 - 453
Main Authors Siegfried, Kellee R, Kimble, Judith
Format Journal Article
LanguageEnglish
Published England The Company of Biologists Limited 01.01.2002
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The shape and polarity of the C. elegans gonad is defined during early gonadogenesis by two somatic gonadal precursor cells, Z1 and Z4, and their descendants. Z1 and Z4 divide asymmetrically to establish the proximal-distal axes of the gonad and to generate regulatory leader cells that control organ shape. In this paper, we report that pop-1, the C. elegans TCF/LEF-1 transcription factor, controls the first Z1/Z4 asymmetric division and hence controls proximal-distal axis formation. We have identified two pop-1(Sys) alleles (for sy mmetrical s isters) that render the Z1/Z4 divisions symmetrical. The pop-1(q645) allele is fully penetrant for the Sys gonadogenesis defect in hermaphrodites, but affects male gonads weakly; pop-1(q645) alters a conserved amino acid in the β-catenin binding domain. The pop-1(q624) allele is weakly penetrant for multiple defects and appears to be a partial loss-of-function mutation; pop-1(q624) alters a conserved amino acid in the HMG-box DNA binding domain. Zygotic pop-1(RNAi) confirms the role of pop-1 in Z1/Z4 asymmetry and reveals additional roles of pop-1, including one in leader cell migration. Two other Wnt pathway regulators, wrm-1 and lit-1 , have the same effect as pop-1 on Z1/Z4 asymmetry. Therefore, wrm-1 and lit-1 are required for pop-1 function, rather than opposing it as observed in the early embryo. We conclude that POP-1 controls the Z1/Z4 asymmetric division and thereby establishes the proximal-distal axes of the gonad. This control over proximal-distal polarity extends our view of Wnt signaling in C. elegans , which had previously been known to control anterior-posterior polarities.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0950-1991
1477-9129
DOI:10.1242/dev.129.2.443