Evolution of the control of pigment and plastid development in photosynthetic organisms

How do bioenergetic organelles relate to the cells they are in and how was this relationship established over the course of evolution? Plastids and mitochondria are viewed as prokaryotic residents in eukaryotic cells. These organelles are semiautonomous: they perpetuate themselves by division but re...

Full description

Saved in:
Bibliographic Details
Published inBioSystems Vol. 14; no. 1; pp. 123 - 147
Main Author Schiff, Jerome A.
Format Journal Article
LanguageEnglish
Published Ireland Elsevier Ireland Ltd 1981
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:How do bioenergetic organelles relate to the cells they are in and how was this relationship established over the course of evolution? Plastids and mitochondria are viewed as prokaryotic residents in eukaryotic cells. These organelles are semiautonomous: they perpetuate themselves by division but regulate and are subject to regulation by the cell in which they are residents. Although these organelles are usually constitutive, their development is arrested in certain organisms when an inducing substrate is absent (light, for example, in the case of the chloroplast) with the formation of precursor organelles such as proplastids. Various trends in the evolution of photocontrol systems are discussed including those concerned with photoperception and photomorphogenesis. The photocontrol of chloroplast development by blue and red light is discussed in relation to its possible evolutionary origins in a system for finding the right light for photosynthesis. Models for various types of cellular regulation by light during chloroplast development are discussed. Also considered is the evolution of plastid pigments in response to available light. A parallel evolution of accessory pigments and chlorophylls is suggested which led to chlorophyll reaction centers serving as energy sinks for light absorbed by accessory pigments and, therefore, having their absorptions pushed to the longest possible wavelengths as accessory pigments evolved to fill the middle of the spectrum in response to ecological selection. An endosymbiotic origin of bioenergetic organelles is suggested based on polyphyletic origins of chloroplasts from a number of oxygenic procaryotic precursors. The similarity between proplastids and these oxygenic procaryotes suggests that the original invading organelle may have resembled a modern proplastid rather than a mature chloroplast.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0303-2647
1872-8324
DOI:10.1016/0303-2647(81)90027-7