A Snowfall Detection Algorithm for Fengyun-3D Microwave Sounders with Differentiated Atmospheric Temperature Conditions
Precipitation in different phases has varying effects on runoff. However, monitoring surface snowfall poses a significant challenge, highlighting the importance of developing a snowfall detection algorithm. The objective of this study is develop a snowfall detection algorithm for the Microwave Tempe...
Saved in:
Published in | Water (Basel) Vol. 15; no. 13; p. 2315 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Precipitation in different phases has varying effects on runoff. However, monitoring surface snowfall poses a significant challenge, highlighting the importance of developing a snowfall detection algorithm. The objective of this study is develop a snowfall detection algorithm for the Microwave Temperature Sounder-2 (MWTS-II) and the Microwave Humidity Sounder-2 (MWHS-II) onboard the FY-3D satellite while considering the differentiated atmosphere temperature conditions. The results show that: (1) The brightness temperature (TB) of MWTS Channel 3 is well-suited for pre-classifying atmospheric temperatures, and significant differences in TB distribution exist between the two pre-classification subsets. (2) Among six machine classifiers examined, the random forest classifier exhibits favorable classification performance on both the validation set (accuracy: 0.76, recall: 0.76, F1 score: 0.75) and test set (accuracy: 0.80, recall: 0.44, F1 score: 0.44). (3) The application of the snowfall detection algorithm showcases a reasonable spatial distribution and outperforms the IMERG and ERA5 snowfall data. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w15132315 |