Controllable Threshold Voltage (Vth) Drift in Ovonic Threshold Switch Devices Under a High-Frequency Continuous Operation

In this work, we studied the threshold voltage <inline-formula> <tex-math notation="LaTeX">{V} _{\text {th}} </tex-math></inline-formula> for an ovonic threshold switch (OTS) device in a high-frequency continuous operation. By applying a pulse sequence with small pu...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 69; no. 6; pp. 3158 - 3162
Main Authors Chen, Ziqi, Wang, Lun, Wen, Jinyu, Tong, Hao, Miao, Xiangshui
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, we studied the threshold voltage <inline-formula> <tex-math notation="LaTeX">{V} _{\text {th}} </tex-math></inline-formula> for an ovonic threshold switch (OTS) device in a high-frequency continuous operation. By applying a pulse sequence with small pulse intervals, the dependence of <inline-formula> <tex-math notation="LaTeX">{V} _{\text {th}} </tex-math></inline-formula> on the falling edge of the prior pulse has been investigated in the Te-based OTS device. The results indicate that the <inline-formula> <tex-math notation="LaTeX">{V} _{\text {th}} </tex-math></inline-formula> presents a Weibull distribution in the pulse sequence, and the <inline-formula> <tex-math notation="LaTeX">{V} _{\text {th}} </tex-math></inline-formula> distribution drifts nonmonotonically with the pulse falling edge. Meanwhile, the drift tendency of the <inline-formula> <tex-math notation="LaTeX">{V} _{\text {th}} </tex-math></inline-formula> distribution was found depending on the device area. Furthermore, the recovery process and the time-resolved current profiles in the device operation have been investigated to further study the <inline-formula> <tex-math notation="LaTeX">{V} _{\text {th}} </tex-math></inline-formula> drift. The results indicate that the <inline-formula> <tex-math notation="LaTeX">{V} _{\text {th}} </tex-math></inline-formula> drift in continuous device operation is controllable and results from a combination of the effects of heat accumulation and the recovery process. The <inline-formula> <tex-math notation="LaTeX">{V} _{\text {th}} </tex-math></inline-formula> drift at high-frequency operating can be reduced by optimizing the device lateral dimension according to the mapping results of the <inline-formula> <tex-math notation="LaTeX">{V} _{\text {th}} </tex-math></inline-formula>. Our results can guide the design and operation of the OTS device with a low <inline-formula> <tex-math notation="LaTeX">{V} _{\text {th}} </tex-math></inline-formula> drift requirement.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2022.3169118