Effective removal of Cr(VI) in water by bulk-size polyaniline/polyvinyl alcohol/amyloid fibril composite beads

Abstract With the rapid expansion of industrial activities, chromium ions are discharged into the environment and cause water and soil pollution of various extents, which seriously endangers the natural ecological environment and human health. In this study, polyaniline/polyvinyl alcohol/amyloid fib...

Full description

Saved in:
Bibliographic Details
Published inWater science and technology Vol. 88; no. 8; pp. 1944 - 1956
Main Authors Wen, Jia, Zhang, Yuru, Du, Yinlin
Format Journal Article
LanguageEnglish
Published London IWA Publishing 15.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract With the rapid expansion of industrial activities, chromium ions are discharged into the environment and cause water and soil pollution of various extents, which seriously endangers the natural ecological environment and human health. In this study, polyaniline/polyvinyl alcohol/amyloid fibril (PANI/PVA/AFL) composite gel beads (PPA) were prepared from polyaniline and amyloid fibrils with HCl as doping acid and PVA as a cross-linking agent. The results showed that PPA was an irregular composite bead with a diameter of 6 mm. The adsorption of Cr(VI) on the PPA gel beads followed the pseudo-second-order kinetics model, suggesting that chemical reactions were the controlling step in the Cr(VI) adsorption process. Though the Redlich–Peterson isotherm model had the best fit for the adsorption data, the isothermal adsorption process can be simplified using the Langmuir model. The maximum adsorption capacity for Cr(VI) in water was 51.5 mg g−1, comparable to or even higher than some PANI-based nanomaterials. Thermodynamic parameters showed that the adsorption process was a spontaneous, endothermic, and entropy-increasing process. Microscopic analysis revealed that the capture of Cr(VI) on PPA was mainly governed by electrostatic attraction, reduction, and complexation reactions. PPA can be used as a kind of effective remediation agent to remove Cr(VI) in water.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0273-1223
1996-9732
DOI:10.2166/wst.2023.327