A Reconfigurable Broadband Polarization Converter Based on an Active Metasurface
We propose an active metasurface whose functionalities can be dynamically switched among linear-to-linear, linear-to-elliptical, and linear-to-circular polarization conversions in a wideband. The active metasurface is composed of butterfly-shaped unit cells embedded with voltage-controlled varactor...
Saved in:
Published in | IEEE transactions on antennas and propagation Vol. 66; no. 11; pp. 6086 - 6095 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-926X 1558-2221 |
DOI | 10.1109/TAP.2018.2866636 |
Cover
Loading…
Summary: | We propose an active metasurface whose functionalities can be dynamically switched among linear-to-linear, linear-to-elliptical, and linear-to-circular polarization conversions in a wideband. The active metasurface is composed of butterfly-shaped unit cells embedded with voltage-controlled varactor diodes. By controlling the bias voltage of the varactor diodes, the electromagnetic responses of the proposed metasurface can be tailored, leading to reconfigurable polarization conversions. The simulation results reveal that with no bias voltage, the proposed metasurface is able to reflect linear-polarization waves to cross-polarization waves in the frequency range from 3.9 to 7.9 GHz, with a polarization conversion ratio of over 80%; however, at the bias voltage of −19 V, the metasurface is tuned to be a circular polarization converter in a wideband from 4.9 to 8.2 GHz. Moreover, two equivalent circuits along the <inline-formula> <tex-math notation="LaTeX">x </tex-math></inline-formula>- and <inline-formula> <tex-math notation="LaTeX">y </tex-math></inline-formula>-directions are developed to elucidate the tunable mechanism. The experimental results are in a good agreement with the simulation results obtained from commercial software and from the equivalent circuit model. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/TAP.2018.2866636 |