An Assessment of Polynomial Regression Techniques for the Relative Radiometric Normalization (RRN) of High-Resolution Multi-Temporal Airborne Thermal Infrared (TIR) Imagery

Thermal Infrared (TIR) remote sensing images of urban environments are increasingly available from airborne and satellite platforms. However, limited access to high-spatial resolution (H-res: ~1 m) TIR satellite images requires the use of TIR airborne sensors for mapping large complex urban surfaces...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 6; no. 12; pp. 11810 - 11828
Main Authors Mustafizur Rahman, Mir, Hay, Geoffrey, Couloigner, Isabelle, Hemachandran, Bharanidharan, Bailin, Jeremy
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Thermal Infrared (TIR) remote sensing images of urban environments are increasingly available from airborne and satellite platforms. However, limited access to high-spatial resolution (H-res: ~1 m) TIR satellite images requires the use of TIR airborne sensors for mapping large complex urban surfaces, especially at micro-scales. A critical limitation of such H-res mapping is the need to acquire a large scene composed of multiple flight lines and mosaic them together. This results in the same scene components (e.g., roads, buildings, green space and water) exhibiting different temperatures in different flight lines. To mitigate these effects, linear relative radiometric normalization (RRN) techniques are often applied. However, the Earth’s surface is composed of features whose thermal behaviour is characterized by complexity and non-linearity. Therefore, we hypothesize that non-linear RRN techniques should demonstrate increased radiometric agreement over similar linear techniques. To test this hypothesis, this paper evaluates four (linear and non-linear) RRN techniques, including: (i) histogram matching (HM); (ii) pseudo-invariant feature-based polynomial regression (PIF_Poly); (iii) no-change stratified random sample-based linear regression (NCSRS_Lin); and (iv) no-change stratified random sample-based polynomial regression (NCSRS_Poly); two of which (ii and iv) are newly proposed non-linear techniques. When applied over two adjacent flight lines (~70 km2) of TABI-1800 airborne data, visual and statistical results show that both new non-linear techniques improved radiometric agreement over the previously evaluated linear techniques, with the new fully-automated method, NCSRS-based polynomial regression, providing the highest improvement in radiometric agreement between the master and the slave images, at ~56%. This is ~5% higher than the best previously evaluated linear technique (NCSRS-based linear regression).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2072-4292
2072-4292
DOI:10.3390/rs61211810