An Assessment of Polynomial Regression Techniques for the Relative Radiometric Normalization (RRN) of High-Resolution Multi-Temporal Airborne Thermal Infrared (TIR) Imagery
Thermal Infrared (TIR) remote sensing images of urban environments are increasingly available from airborne and satellite platforms. However, limited access to high-spatial resolution (H-res: ~1 m) TIR satellite images requires the use of TIR airborne sensors for mapping large complex urban surfaces...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 6; no. 12; pp. 11810 - 11828 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Thermal Infrared (TIR) remote sensing images of urban environments are increasingly available from airborne and satellite platforms. However, limited access to high-spatial resolution (H-res: ~1 m) TIR satellite images requires the use of TIR airborne sensors for mapping large complex urban surfaces, especially at micro-scales. A critical limitation of such H-res mapping is the need to acquire a large scene composed of multiple flight lines and mosaic them together. This results in the same scene components (e.g., roads, buildings, green space and water) exhibiting different temperatures in different flight lines. To mitigate these effects, linear relative radiometric normalization (RRN) techniques are often applied. However, the Earth’s surface is composed of features whose thermal behaviour is characterized by complexity and non-linearity. Therefore, we hypothesize that non-linear RRN techniques should demonstrate increased radiometric agreement over similar linear techniques. To test this hypothesis, this paper evaluates four (linear and non-linear) RRN techniques, including: (i) histogram matching (HM); (ii) pseudo-invariant feature-based polynomial regression (PIF_Poly); (iii) no-change stratified random sample-based linear regression (NCSRS_Lin); and (iv) no-change stratified random sample-based polynomial regression (NCSRS_Poly); two of which (ii and iv) are newly proposed non-linear techniques. When applied over two adjacent flight lines (~70 km2) of TABI-1800 airborne data, visual and statistical results show that both new non-linear techniques improved radiometric agreement over the previously evaluated linear techniques, with the new fully-automated method, NCSRS-based polynomial regression, providing the highest improvement in radiometric agreement between the master and the slave images, at ~56%. This is ~5% higher than the best previously evaluated linear technique (NCSRS-based linear regression). |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs61211810 |