UAV Positioning and Power Control for Two-Way Wireless Relaying

This paper considers an unmanned-aerial-vehicle-enabled (UAV-enabled) wireless network where a relay UAV is used for two-way communications between a ground base station (BS) and a set of distant user equipment (UE). The UAV adopts the amplify-and-forward strategy for two-way relaying over orthogona...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 19; no. 2; pp. 1008 - 1024
Main Authors Li, Lei, Chang, Tsung-Hui, Cai, Shu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1536-1276
1558-2248
DOI10.1109/TWC.2019.2950301

Cover

Loading…
More Information
Summary:This paper considers an unmanned-aerial-vehicle-enabled (UAV-enabled) wireless network where a relay UAV is used for two-way communications between a ground base station (BS) and a set of distant user equipment (UE). The UAV adopts the amplify-and-forward strategy for two-way relaying over orthogonal frequency bands. The UAV positioning and the transmission powers of all nodes are jointly designed to maximize the sum rate of both uplink and downlink subject to transmission power constraints and the signal-to-noise ratio constraint on the UAV control channel. The formulated joint positioning and power control (JPPC) problem has an intricate expression of the sum rate due to two-way transmissions and is difficult to solve in general. We propose a novel concave surrogate function for the sum rate and employ the successive convex approximation (SCA) technique for obtaining a high-quality approximate solution. We show that the proposed surrogate function has a small curvature and enables a fast convergence of SCA. Furthermore, we develop a computationally efficient JPPC algorithm by applying the fast iterative shrinkage-thresholding algorithm (FISTA) type accelerated gradient projection (AGP) algorithm to solve the SCA problem as well as one of the projection subproblems, resulting in a double-loop AGP method. Simulation results show that the proposed JPPC algorithms are not only computationally efficient but also greatly outperform the heuristic approaches.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2019.2950301