Radar-Assisted Predictive Beamforming for Vehicular Links: Communication Served by Sensing

In vehicular networks of the future, sensing and communication functionalities will be intertwined. In this article, we investigate a radar-assisted predictive beamforming design for vehicle-to-infrastructure (V2I) communication by exploiting the dual-functional radar-communication (DFRC) technique....

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 19; no. 11; pp. 7704 - 7719
Main Authors Liu, Fan, Yuan, Weijie, Masouros, Christos, Yuan, Jinhong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In vehicular networks of the future, sensing and communication functionalities will be intertwined. In this article, we investigate a radar-assisted predictive beamforming design for vehicle-to-infrastructure (V2I) communication by exploiting the dual-functional radar-communication (DFRC) technique. Aiming for realizing joint sensing and communication functionalities at road side units (RSUs), we present a novel extended Kalman filtering (EKF) framework to track and predict kinematic parameters of each vehicle. By exploiting the radar functionality of the RSU we show that the communication beam tracking overheads can be drastically reduced. To improve the sensing accuracy while guaranteeing the downlink communication sum-rate, we further propose a power allocation scheme for multiple vehicles. Numerical results have shown that the proposed DFRC based beam tracking approach significantly outperforms the communication-only feedback based technique in the tracking performance. Furthermore, the designed power allocation method is able to achieve a favorable performance trade-off between sensing and communication.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2020.3015735