Enhancing Scattering Circular Dichroism of Chiral Substrate via Mie Resonances

Chirality plays a pivotal role in the interaction between light and matter, yet detecting chiral signals from natural materials remains a challenge, necessitating the enhancement of their intensity. In this study, we present an approach to investigate substrate chirality through exploiting light sca...

Full description

Saved in:
Bibliographic Details
Published inIEEE photonics journal Vol. 16; no. 1; pp. 1 - 6
Main Authors Cai, Hanqing, Hu, Haifeng, Zhan, Qiwen
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.02.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chirality plays a pivotal role in the interaction between light and matter, yet detecting chiral signals from natural materials remains a challenge, necessitating the enhancement of their intensity. In this study, we present an approach to investigate substrate chirality through exploiting light scattering from Mie particles. To comprehensively analyze the scattering phenomenon, we theoretically derive the T-matrix for a nonchiral Mie sphere positioned on a chiral substrate. Unlike the Mie sphere in free space, our derivation accounts for the intricate coupling between the scattered light by the sphere and the reflected light by the substrate. Employing the T-matrix framework, we calculate the scattering power and circular dichroism spectra. Our findings reveal a remarkable augmentation of chiral signals originating from the substrate, thanks to the Mie resonance within high-index spheres. This research underscores the feasibility of probing local chiral properties in the vicinity of a sample surface, promising new insights into chiral interactions at the nanoscale.
ISSN:1943-0655
1943-0655
1943-0647
DOI:10.1109/JPHOT.2023.3346310