Accelerated Distributed Nesterov Gradient Descent
This paper considers the distributed optimization problem over a network, where the objective is to optimize a global function formed by a sum of local functions, using only local computation and communication. We develop an accelerated distributed Nesterov gradient descent method. When the objectiv...
Saved in:
Published in | IEEE transactions on automatic control Vol. 65; no. 6; pp. 2566 - 2581 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper considers the distributed optimization problem over a network, where the objective is to optimize a global function formed by a sum of local functions, using only local computation and communication. We develop an accelerated distributed Nesterov gradient descent method. When the objective function is convex and <inline-formula><tex-math notation="LaTeX">L</tex-math></inline-formula>-smooth, we show that it achieves a <inline-formula><tex-math notation="LaTeX">O(\frac{1}{t^{1.4-\epsilon }})</tex-math></inline-formula> convergence rate for all <inline-formula><tex-math notation="LaTeX">\epsilon \in (0,1.4)</tex-math></inline-formula>. We also show the convergence rate can be improved to <inline-formula><tex-math notation="LaTeX">O(\frac{1}{t^2})</tex-math></inline-formula> if the objective function is a composition of a linear map and a strongly convex and smooth function. When the objective function is <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>-strongly convex and <inline-formula><tex-math notation="LaTeX">L</tex-math></inline-formula>-smooth, we show that it achieves a linear convergence rate of <inline-formula><tex-math notation="LaTeX">O([ 1 - C (\frac{\mu }{L})^{5/7} ]^t)</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">\frac{L}{\mu }</tex-math></inline-formula> is the condition number of the objective, and <inline-formula><tex-math notation="LaTeX">C>0</tex-math></inline-formula> is some constant that does not depend on <inline-formula><tex-math notation="LaTeX">\frac{L}{\mu }</tex-math></inline-formula>. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2019.2937496 |