Degree and distribution of mineralization in the human mandibular condyle

The degree of mineralization of bone (DMB) in the mandibular condyle reflects the age and remodeling rate of the bone tissue. Quantification of DMB facilitates a better understanding of possible effects of adaptive remodeling on mineralization of the condyle and its possible consequences for its mec...

Full description

Saved in:
Bibliographic Details
Published inCalcified tissue international Vol. 79; no. 3; pp. 190 - 196
Main Authors Renders, G A P, Mulder, L, van Ruijven, L J, van Eijden, T M G J
Format Journal Article
LanguageEnglish
Published United States Springer Nature B.V 01.09.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The degree of mineralization of bone (DMB) in the mandibular condyle reflects the age and remodeling rate of the bone tissue. Quantification of DMB facilitates a better understanding of possible effects of adaptive remodeling on mineralization of the condyle and its possible consequences for its mechanical quality. We hypothesized differences in the degree and distribution of mineralization between trabecular and cortical bone and between various cortical regions. Microcomputed tomography was used to measure mineralization in 10 human mandibular condyles. Mean DMB was higher in cortical (1,045 mg hydroxyapatite/cm(3)) than in trabecular bone (857 mg/cm(3)) and differed significantly between cortical regions (anterior 987 mg/cm(3), posterior 1,028 mg/cm(3), subchondral 1,120 mg/cm(3)). The variation of DMB distribution was significantly larger in the anterior cortex than in the posterior and subchondral cortex, indicating a larger amount of heterogeneity of mineralization anteriorly. Within the cortical bone, DMB increased with the distance from the cortical canals to the periphery. Similarly, the DMB of trabecular bone increased with the distance from the surface of the trabeculae to their cores. It was concluded that the rate of remodeling differs between condylar trabecular and cortical bone and between cortical regions and that DMB is not randomly distributed across the bone. The difference in DMB between condylar cortical and trabecular bone suggests a large difference in Young's modulus.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0171-967X
1432-0827
DOI:10.1007/s00223-006-0015-5