Sulfated mucopolysaccharides of midgestation embryonic and extraembryonic tissues of the mouse
Incorporation of [ 35S]sulfate into sulfated mucopolysaccharides has been characterized in midgestation mouse embryo, yolk sac, trophoblast, and decidua. Enzymatic analysis indicated that chondroitin sulfates contained approximately half of the label in embryo, trophoblast, and decidua, but less tha...
Saved in:
Published in | Archives of biochemistry and biophysics Vol. 162; no. 1; pp. 272 - 280 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.05.1974
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Incorporation of [
35S]sulfate into sulfated mucopolysaccharides has been characterized in midgestation mouse embryo, yolk sac, trophoblast, and decidua. Enzymatic analysis indicated that chondroitin sulfates contained approximately half of the label in embryo, trophoblast, and decidua, but less than 20% in yolk sac. While the labeled chondroitin sulfate fraction of trophoblast and decidua was mainly chondroitin-4-sulfate, only embryo contained a significant proportion of labeled chondroitin-6-sulfate. The relative incorporation into embryo chondroitin-6-sulfate was also substantially higher than that observed in four adult soft tissues. Labeled dermatan sulfate was absent from the embryo and yolk sac, but small amounts might have been synthesized by the placenta. Nitrous acid degradation studies revealed that essentially all the chondroitinase resistant MPS was
N-sulfated, i.e., heparan sulfate and/or heparin. Electrophoretic profiles indicate that the bulk of the
N-sulfated material resembles heparan sulfate rather than heparin. Electrophoretic heterogeneity and slow migration rates relative to standard markers suggest that the majority of labeled chondroitin sulfates may be undersulfated. The different mucopolysaccharide patterns in the various tissues may reflect their specialized properties and functions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0003-9861 1096-0384 |
DOI: | 10.1016/0003-9861(74)90126-X |