A Distributed Finite-Time Secondary Average Voltage Regulation and Current Sharing Controller for DC Microgrids

This paper proposes a distributed finite-time secondary controller to achieve average voltage regulation and proportionate current sharing within a finite settling time for autonomous network of dc microgrids. It is employed by using a distributed finite-time control approach which maintains average...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on smart grid Vol. 10; no. 1; pp. 282 - 292
Main Authors Sahoo, Subham, Mishra, Sukumar
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper proposes a distributed finite-time secondary controller to achieve average voltage regulation and proportionate current sharing within a finite settling time for autonomous network of dc microgrids. It is employed by using a distributed finite-time control approach which maintains average voltage regulation of the system facilitating proportionate current sharing simultaneously by virtue of dynamic consensus between its neighbors. The proposed scheme ensures an improved performance over the conventional distributed secondary methods by reducing overshoots and chattering which is significant for critical operation of the loads. The proposed control strategy is simulated in MATLAB/Simulink environment to test link-failure resiliency, plug and play capability, and controller performance under communication delays within a tolerable upper bound on delay determined using time-delay analysis. Moreover the effect of variable time delays in different transmission medium is also simulated to test the practicality of the approach. This strategy is further tested on a 500-W FPGA-based experimental prototype to validate the control approach under different scenarios.
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2017.2737938