Joint Precoding and Pre-Equalization for Faster-Than-Nyquist Transmission Over Multipath Fading Channels

Faster-than-Nyquist signaling (FTNS) has emerged as a promising technique to increase communication capacity in bandwidth-limited channels. However, the presence of FTN-induced inter-symbol interference (FTN-ISI) in the received observations, is detrimental to channel estimation (CE) and data detect...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 71; no. 4; pp. 3948 - 3963
Main Authors Wen, Shan, Liu, Guanghui, Liu, Chengxiang, Qu, Huiyang, Zhang, Lei, Imran, Muhammad Ali
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Faster-than-Nyquist signaling (FTNS) has emerged as a promising technique to increase communication capacity in bandwidth-limited channels. However, the presence of FTN-induced inter-symbol interference (FTN-ISI) in the received observations, is detrimental to channel estimation (CE) and data detection in terms of computational complexity and performance. This paper copes with these problems by incorporating linear pre-equalization (LPE) and composite precoding formed by linear spectral precoding and Tomlinson-Harashima precoding (THP), into the FTNS. Specifically, LPE completely pre-equalizes the FTN-ISI, while spectral precoding resolves the LPE-caused signal spectral broadening by introducing proper artificial ISI, which is pre-equalized by THP. Channel-induced ISI, as the only ISI component in the observations, is estimated and equalized using the classical frequency-domain low-complexity schemes. We show that there are four advantages of the LPE-aided CE over the CE designed for the FTN transmissions without FTN-ISI pre-equalization, namely lower pilot overhead, simpler yet optimal pilot sequence design, lower mean-squared error of CE, and more robust against the FTN-ISI. Simulation results show that our scheme improves the performance of CE and detection, compared to existing FTN frequency-domain CE and equalization schemes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2022.3146423