Data from the experiment of dynamic moisture transport in spruce wood under cyclic step-changes in relative humidity 72–95

The interaction of wood and moisture has to be considered in many industrial sectors. Wood is highly hygroscopic material while the absorbed moisture affects all its technical properties. One of them is a moisture permeability which is further affected by the sorption hysteresis and also differs in...

Full description

Saved in:
Bibliographic Details
Published inData in brief Vol. 55; p. 110729
Main Authors Richter, Jan, Staněk, Kamil, Kopecký, Pavel
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.08.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The interaction of wood and moisture has to be considered in many industrial sectors. Wood is highly hygroscopic material while the absorbed moisture affects all its technical properties. One of them is a moisture permeability which is further affected by the sorption hysteresis and also differs in the three wood anatomical directions – radial, tangential, and axial. For the prediction of the dynamic hygro-thermal behaviour of wood can be used numerical simulation tools. However, data from carefully designed and controlled experiments are needed for reliable validation of these tools. This paper presents data from a 45-day dynamic laboratory experiment. The one-dimensional moisture transport in spruce wood in the tangential and radial directions under isothermal conditions was studied. The samples were exposed to cyclic step-changes in relative humidity 72–95 % at 23 °C. Data show the rate of stabilisation of moisture content in the samples, the effect of sorption hysteresis, and changes in the temperature of samples due to moisture sorption. In addition, the paper also presents material functions describing the sorption properties and moisture permeability of spruce wood. These properties were determined based on laboratory measurements using the spruce wood of the same origin as used for the dynamic experiment. The dynamic data, together with the proposed material functions can be used in the development or verification of hygro-thermal numerical simulation tools.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2352-3409
2352-3409
DOI:10.1016/j.dib.2024.110729