Influence of Topography on UAV LiDAR-Based LAI Estimation in Subtropical Mountainous Secondary Broadleaf Forests

The leaf area index (LAI) serves as a crucial metric in quantifying the structure and density of vegetation canopies, playing an instrumental role in determining vegetation productivity, nutrient and water utilization, and carbon balance dynamics. In subtropical montane forests, the pronounced spati...

Full description

Saved in:
Bibliographic Details
Published inForests Vol. 15; no. 1; p. 17
Main Authors Li, Yunfei, Zeng, Hongda, Xiong, Jingfeng, Miao, Guofang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The leaf area index (LAI) serves as a crucial metric in quantifying the structure and density of vegetation canopies, playing an instrumental role in determining vegetation productivity, nutrient and water utilization, and carbon balance dynamics. In subtropical montane forests, the pronounced spatial heterogeneity combined with undulating terrain introduces significant challenges for the optical remote sensing inversion accuracy of LAI, thereby complicating the process of ground validation data collection. The emergence of UAV LiDAR offers an innovative monitoring methodology for canopy LAI inversion in these terrains. This study assesses the implications of altitudinal variations on the attributes of UAV LiDAR point clouds, such as point density, beam footprint, and off-nadir scan angle, and their subsequent ramifications for LAI estimation accuracy. Our findings underscore that with increased altitude, both the average off-nadir scan angle and point density exhibit an ascending trend, while the beam footprint showcases a distinct negative correlation, with a correlation coefficient (R) reaching 0.7. In contrast to parallel flight paths, LAI estimates derived from intersecting flight paths demonstrate superior precision, denoted by R2 = 0.70, RMSE = 0.75, and bias = 0.42. Notably, LAI estimation discrepancies intensify from upper slope positions to middle positions and further to lower ones, amplifying with the steepness of the gradient. Alterations in point cloud attributes induced by the terrain, particularly the off-nadir scan angle and beam footprint, emerge as critical influencers on the precision of LAI estimations. Strategies encompassing refined flight path intervals or multi-directional point cloud data acquisition are proposed to bolster the accuracy of canopy structural parameter estimations in montane landscapes.
ISSN:1999-4907
1999-4907
DOI:10.3390/f15010017