Reinforced Imitation: Sample Efficient Deep Reinforcement Learning for Mapless Navigation by Leveraging Prior Demonstrations

This letter presents a case study of a learning-based approach for target-driven mapless navigation. The underlying navigation model is an end-to-end neural network, which is trained using a combination of expert demonstrations, imitation learning (IL) and reinforcement learning (RL). While RL and I...

Full description

Saved in:
Bibliographic Details
Published inIEEE robotics and automation letters Vol. 3; no. 4; pp. 4423 - 4430
Main Authors Pfeiffer, Mark, Shukla, Samarth, Turchetta, Matteo, Cadena, Cesar, Krause, Andreas, Siegwart, Roland, Nieto, Juan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2377-3766
2377-3766
DOI10.1109/LRA.2018.2869644

Cover

Loading…
More Information
Summary:This letter presents a case study of a learning-based approach for target-driven mapless navigation. The underlying navigation model is an end-to-end neural network, which is trained using a combination of expert demonstrations, imitation learning (IL) and reinforcement learning (RL). While RL and IL suffer from a large sample complexity and the distribution mismatch problem, respectively, we show that leveraging prior expert demonstrations for pretraining can reduce the training time to reach at least the same level of the performance compared to plain RL by a factor of 5. We present a thorough evaluation of different combinations of expert demonstrations, different RL algorithms, and reward functions, both in simulation and on a real robotic platform. Our results show that the final model outperforms both standalone approaches in the amount of successful navigation tasks. In addition, the RL reward function can be significantly simplified when using pretraining, e.g., by using a sparse reward only. The learned navigation policy is able to generalize to unseen and real-world environments.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2018.2869644