Studies on modified limited-memory BFGS method in full waveform inversion
Full waveform inversion (FWI) is a non-linear optimization problem based on full-wavefield modeling to obtain quantitative information of subsurface structure by minimizing the difference between the observed seismic data and the predicted wavefield. The limited-memory Broyden-Fletcher-Goldfarb-Shan...
Saved in:
Published in | Frontiers in earth science (Lausanne) Vol. 10 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
27.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Full waveform inversion (FWI) is a non-linear optimization problem based on full-wavefield modeling to obtain quantitative information of subsurface structure by minimizing the difference between the observed seismic data and the predicted wavefield. The limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method is an effective quasi-Newton method in FWI due to its high inversion efficiency with low calculation and storage requirements. Like other conventional quasi-Newton methods, the approximation of the Hessian matrix in the L-BFGS method satisfies the quasi-Newton equation, which only exploits the gradient and model information while the available objective function value is neglected. The modified quasi-Newton equation considers the gradient, model, and objective function information together. Theoretical analysis reveals that the modified quasi-Newton equation is superior to the conventional quasi-Newton equation as it achieves higher-order accuracy in approximating the Hessian matrix. The modified L-BFGS method can be obtained by using the modified quasi-Newton equation to modify the L-BFGS method. This modification improves the accuracy of the Hessian matrix approximation with little increase of calculation for each iteration. We incorporate the modified L-BFGS method into FWI, numerical results show that the modified L-BFGS method has a higher convergence rate, achieves better inversion results, and has stronger anti-noise ability than the conventional L-BFGS method. |
---|---|
ISSN: | 2296-6463 2296-6463 |
DOI: | 10.3389/feart.2022.1047342 |