Bridging Direct and Indirect Data-Driven Control Formulations via Regularizations and Relaxations

In this article, we discuss connections between sequential system identification and control for linear time-invariant systems, often termed indirect data-driven control, as well as a contemporary direct data-driven control approach seeking an optimal decision compatible with recorded data assembled...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 68; no. 2; pp. 883 - 897
Main Authors Dorfler, Florian, Coulson, Jeremy, Markovsky, Ivan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9286
1558-2523
DOI10.1109/TAC.2022.3148374

Cover

Loading…
More Information
Summary:In this article, we discuss connections between sequential system identification and control for linear time-invariant systems, often termed indirect data-driven control, as well as a contemporary direct data-driven control approach seeking an optimal decision compatible with recorded data assembled in a Hankel matrix and robustified through suitable regularizations. We formulate these two problems in the language of behavioral systems theory and parametric mathematical programs, and we bridge them through a multicriteria formulation trading off system identification and control objectives. We illustrate our results with two methods from subspace identification and control: namely, subspace predictive control and low-rank approximation, which constrain trajectories to be consistent with a nonparametric predictor derived from (respectively, the column span of) a data Hankel matrix. In both cases, we conclude that direct and regularized data-driven control can be derived as convex relaxation of the indirect approach, and the regularizations account for an implicit identification step. Our analysis further reveals a novel regularizer and a plausible hypothesis explaining the remarkable empirical performance of direct methods on nonlinear systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2022.3148374