The impact of the herbicide glyphosate and its metabolites AMPA and MPA on the metabolism and functions of human blood neutrophils and their sex-dependent effects on reactive oxygen species and CXCL8/IL-8 production

Significant levels of glyphosate, the world's most widely used herbicide, and its primary metabolites, AMPA and MPA, are detected in various human organs and body fluids, including blood. Several studies have associated the presence of glyphosate in humans with health problems, and effects on i...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental research Vol. 252; no. Pt 1; p. 118831
Main Authors Leblanc, Pier-Olivier, Breton, Yann, Léveillé, Florence, Tessier, Philippe A., Pelletier, Martin
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Significant levels of glyphosate, the world's most widely used herbicide, and its primary metabolites, AMPA and MPA, are detected in various human organs and body fluids, including blood. Several studies have associated the presence of glyphosate in humans with health problems, and effects on immune cells and their functions have been reported. However, the impact of this molecule and its metabolites on neutrophils, the most abundant leukocytes in the human bloodstream, is still poorly documented. We isolated neutrophils from human donor blood and investigated the effects of exposure to glyphosate, AMPA, and MPA on viability, energy metabolism, and essential antimicrobial functions in vitro. We observed that neutrophil viability was unaffected at the blood-relevant average concentrations of the general population and exposed workers, as well as at higher intoxication concentrations. Neutrophil energy metabolism was also not altered following exposure to the chemicals. However, while phagocytosis was unaffected, reactive oxygen species generation and CXCL8/IL-8 production were altered by exposure to the molecules. Alterations in function following exposure to glyphosate and metabolites differed according to the sex of the donors, which could be linked to glyphosate's known role as an endocrine disruptor. While ROS generation was increased in both sexes, male neutrophils exposed to glyphosate had increased intracellular production of CXCL8/IL-8, with no effect on female neutrophils. Conversely, exposure to the metabolites AMPA and MPA decreased extracellular production of this chemokine only in female neutrophils, with MPA also increasing intracellular production in male cells exposed to the chemoattractant N-formyl-methionine-leucyl-phenylalanine. Our study highlights the effects of glyphosate and its metabolites on the antimicrobial functions of neutrophils, which could be associated with health problems as future studies provide a better understanding of the risks associated with glyphosate use. Advances in knowledge will enable better and potentially stricter regulations to protect the public. [Display omitted] •Glyphosate does not affect neutrophil viability, metabolism, or phagocytosis.•Glyphosate increases neutrophil ROS production.•Glyphosate and its metabolites affect CXCL8/IL-8 production in a sex-specific manner.•The metabolites AMPA and MPA also have effects on neutrophil functions. Summary sentence: Glyphosate and its metabolites AMPA and MPA alter the functions of human blood neutrophils differently according to sex.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0013-9351
1096-0953
1096-0953
DOI:10.1016/j.envres.2024.118831