On Faithful Matrix Representations of q-Deformed Models in Quantum Optics

Consider the q-deformed Lie algebra, tq:K^1,K^2q=1−qK^1K^2,K^3,K^1q=sK^3, K^1,K^4q=sK^4,K^3,K^2q=tK^3,K^2,K^4q=tK^4, and K^4,K^3q=rK^1, where r,s,t∈ℝ−0, subject to the physical properties: K^1 and K^2 are real diagonal operators, and K^3=K^4†, († is for Hermitian conjugation). The q-deformed Lie alg...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of mathematics and mathematical sciences Vol. 2022; pp. 1 - 8
Main Authors Hanna, Latif A -M., Alazemi, Abdullah, Al-Dhafeeri, Anwar
Format Journal Article
LanguageEnglish
Published New York Hindawi 19.09.2022
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Consider the q-deformed Lie algebra, tq:K^1,K^2q=1−qK^1K^2,K^3,K^1q=sK^3, K^1,K^4q=sK^4,K^3,K^2q=tK^3,K^2,K^4q=tK^4, and K^4,K^3q=rK^1, where r,s,t∈ℝ−0, subject to the physical properties: K^1 and K^2 are real diagonal operators, and K^3=K^4†, († is for Hermitian conjugation). The q-deformed Lie algebra, tq is introduced as a generalized model of the Tavis–Cummings model (Tavis and Cummings 1968, Bashir and Sebawe Abdalla 1995), namely, K^1,K^2=0,K^1,K^3=−2K^3,K^1,K^4=2K^4,K^2,K^3=K^3,K^2,K^4=K^4, and K^4,K^3=K^1, which is subject to the physical properties K^1 and K^2 are real diagonal operators, and K^3=K^4†. Faithful matrix representations of the least degree of tq are discussed, and conditions are given to guarantee the existence of the faithful representations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0161-1712
1687-0425
DOI:10.1155/2022/6737287