An Optimization-Based Path Planning Approach for Autonomous Vehicles Using the DynEFWA-Artificial Potential Field

With the rapid development of autonomous driving technology, collision avoidance has become a research hotspot since it has the potential to increase safety. To obtain a collision-free path, the artificial potential field (APF) is widely used as a path planning method. APF is capable of establishing...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent vehicles Vol. 7; no. 2; pp. 263 - 272
Main Authors Li, Hongcai, Liu, Wenjie, Yang, Chao, Wang, Weida, Qie, Tianqi, Xiang, Changle
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the rapid development of autonomous driving technology, collision avoidance has become a research hotspot since it has the potential to increase safety. To obtain a collision-free path, the artificial potential field (APF) is widely used as a path planning method. APF is capable of establishing functional relationships between the vehicle and surrounding objects. However, the function features of the traditional APF method can cause autonomous vehicles to fall into the local minimum, and the generated zigzag path may be difficult to follow. Motivated by these challenges, this paper proposes a real-time path planning method for autonomous vehicles using the dynamic enhanced firework algorithm-APF. Firstly, to improve the safety and smoothness of the planned path by the traditional APF method, the constraints of the vehicle dynamics and different types of obstacles are taken into consideration. Secondly, an optimization problem is formulated to find an optimal path with the least cost in the driving area. Finally, the proposed method is verified with both a simulation and a hardware-in-loop test environment. The results show that the studied autonomous vehicle successfully avoids obstacles and arrives at the goal position by using the proposed path-planning method, and the path smoothness is improved.
AbstractList With the rapid development of autonomous driving technology, collision avoidance has become a research hotspot since it has the potential to increase safety. To obtain a collision-free path, the artificial potential field (APF) is widely used as a path planning method. APF is capable of establishing functional relationships between the vehicle and surrounding objects. However, the function features of the traditional APF method can cause autonomous vehicles to fall into the local minimum, and the generated zigzag path may be difficult to follow. Motivated by these challenges, this paper proposes a real-time path planning method for autonomous vehicles using the dynamic enhanced firework algorithm-APF. Firstly, to improve the safety and smoothness of the planned path by the traditional APF method, the constraints of the vehicle dynamics and different types of obstacles are taken into consideration. Secondly, an optimization problem is formulated to find an optimal path with the least cost in the driving area. Finally, the proposed method is verified with both a simulation and a hardware-in-loop test environment. The results show that the studied autonomous vehicle successfully avoids obstacles and arrives at the goal position by using the proposed path-planning method, and the path smoothness is improved.
Author Qie, Tianqi
Yang, Chao
Xiang, Changle
Li, Hongcai
Liu, Wenjie
Wang, Weida
Author_xml – sequence: 1
  givenname: Hongcai
  surname: Li
  fullname: Li, Hongcai
  email: armwtank@bit.edu.cn
  organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Wenjie
  orcidid: 0000-0003-1327-0221
  surname: Liu
  fullname: Liu, Wenjie
  email: lwj_3026@163.com
  organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Chao
  orcidid: 0000-0001-9255-0752
  surname: Yang
  fullname: Yang, Chao
  email: cyang@bit.edu.cn
  organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
– sequence: 4
  givenname: Weida
  orcidid: 0000-0001-6420-5898
  surname: Wang
  fullname: Wang, Weida
  email: wangwd0430@163.com
  organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
– sequence: 5
  givenname: Tianqi
  orcidid: 0000-0002-3851-9890
  surname: Qie
  fullname: Qie, Tianqi
  email: qiebit@sina.com
  organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
– sequence: 6
  givenname: Changle
  surname: Xiang
  fullname: Xiang, Changle
  email: xiangcl@bit.edu.cn
  organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
BookMark eNp9kDtPwzAURi0EEs8dicUSc4ofjWOP4VFAqtQObRkj49xQV6ldbHcov56EAgMD0_2G79x7dU7RofMOELqkZEApUTez58WAEUYHnDLOh_QAnTBeqEwqMjz8yTKXx-gixhUhhArJJFEn6L10eLJJdm0_dLLeZbc6Qo2nOi3xtNXOWfeGy80meG2WuPEBl9vknV_7bcQLWFrTQsTz2NfSEvD9zj2MXsqsDMk21ljd4qlP4FKfRhba-hwdNbqNcPE9z9B89DC7e8rGk8fnu3KcGZ4XKRuyhtcCjCqkkcLUdc0MVVxTqjk0ucoL0Yhag4acF7KgMlevUtBadzhwQvgZut7v7X5_30JM1cpvg-tOVkxIKeSQFKJriX3LBB9jgKYyNn2ZSEHbtqKk6g1XneGqN1x9G-5A8gfcBLvWYfcfcrVHLAD81lWuKGeMfwJWQoh9
CODEN ITIVBL
CitedBy_id crossref_primary_10_1109_TIV_2023_3280599
crossref_primary_10_1007_s10489_024_05915_y
crossref_primary_10_3390_agronomy14112473
crossref_primary_10_1016_j_knosys_2024_111548
crossref_primary_10_1016_j_cie_2023_109767
crossref_primary_10_1016_j_ins_2023_119609
crossref_primary_10_1109_TVT_2022_3223727
crossref_primary_10_1109_TIV_2023_3261274
crossref_primary_10_1109_TSMC_2022_3228934
crossref_primary_10_5194_ms_15_613_2024
crossref_primary_10_1002_aisy_202300269
crossref_primary_10_1109_TIV_2023_3236150
crossref_primary_10_1109_TITS_2024_3450963
crossref_primary_10_1109_ACCESS_2024_3443196
crossref_primary_10_1109_TITS_2024_3388380
crossref_primary_10_1007_s40747_024_01557_2
crossref_primary_10_1109_ACCESS_2025_3549081
crossref_primary_10_26599_JICV_2023_9210025
crossref_primary_10_1109_TIV_2023_3234253
crossref_primary_10_1016_j_eswa_2024_123571
crossref_primary_10_1109_TIV_2023_3234370
crossref_primary_10_1109_TIV_2023_3337417
crossref_primary_10_3390_drones8090506
crossref_primary_10_1109_TIV_2023_3317957
crossref_primary_10_1109_ACCESS_2024_3520999
crossref_primary_10_1109_TIV_2022_3216318
crossref_primary_10_3390_rs15020487
crossref_primary_10_1016_j_eswa_2024_123603
crossref_primary_10_1016_j_jfranklin_2024_106709
crossref_primary_10_1016_j_measurement_2023_113029
crossref_primary_10_1109_ACCESS_2023_3344218
crossref_primary_10_1186_s10033_025_01190_1
crossref_primary_10_1016_j_aej_2024_08_001
crossref_primary_10_3390_en15051769
crossref_primary_10_1016_j_mechmachtheory_2023_105406
crossref_primary_10_1109_TITS_2022_3230680
crossref_primary_10_1016_j_ymssp_2024_111126
crossref_primary_10_1016_j_eswa_2024_123481
crossref_primary_10_1093_ijlct_ctae254
crossref_primary_10_1177_01423312241264860
crossref_primary_10_3390_su152115377
crossref_primary_10_3390_drones9010039
crossref_primary_10_1109_JIOT_2023_3289793
crossref_primary_10_1109_TTE_2024_3374512
crossref_primary_10_3390_s23187918
crossref_primary_10_1016_j_geits_2023_100092
crossref_primary_10_1109_TIV_2022_3225340
crossref_primary_10_1049_itr2_12595
crossref_primary_10_1109_TVT_2024_3380745
crossref_primary_10_1109_TIV_2023_3245612
crossref_primary_10_1109_TIV_2023_3245615
crossref_primary_10_1109_TIV_2023_3348484
crossref_primary_10_1109_ACCESS_2024_3416670
crossref_primary_10_1007_s10489_024_06074_w
crossref_primary_10_3390_s25020395
crossref_primary_10_2514_1_G007691
crossref_primary_10_1007_s12239_023_0102_x
crossref_primary_10_1109_TIV_2023_3252571
crossref_primary_10_3390_app14114613
crossref_primary_10_1109_ACCESS_2024_3443869
crossref_primary_10_1109_TVT_2024_3454315
crossref_primary_10_1109_JSEN_2024_3516124
crossref_primary_10_1109_TIV_2023_3283055
crossref_primary_10_1016_j_ifacol_2024_11_145
crossref_primary_10_1109_ACCESS_2023_3338683
crossref_primary_10_1016_j_trc_2024_104654
crossref_primary_10_1109_TIV_2023_3296435
crossref_primary_10_1109_TIV_2023_3275993
Cites_doi 10.1109/CEC.2014.6900485
10.1109/TITS.2016.2604240
10.1109/TCST.2008.2012116
10.1109/TVT.2016.2555853
10.15607/rss.2013.ix.031
10.1109/TIV.2020.3027717
10.1016/j.eswa.2018.01.050
10.1109/TMECH.2015.2493980
10.1007/s11370-020-00314-x
10.1109/TITS.2019.2913998
10.1109/TIE.2019.2898599
10.1109/TIE.2018.2874587
10.1109/TITS.2014.2366974
10.3390/s18020571
10.1109/TITS.2012.2198214
10.1109/TITS.2015.2498841
10.1177/027836498600500106
10.1109/TVT.2020.3046520
10.1109/3477.678626
10.1109/TIV.2017.2788208
10.1109/TVT.2020.2979623
10.1049/iet-its.2019.0606
10.3390/s19153318
10.1109/TIV.2018.2804162
10.1109/TITS.2018.2841967
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIV.2021.3123341
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2379-8904
EndPage 272
ExternalDocumentID 10_1109_TIV_2021_3123341
9591322
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51975048; U1764257
  funderid: 10.13039/501100001809
– fundername: Beijing Institute of Technology Research Fund Program for Young Scholars
  funderid: 10.13039/501100012236
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
O9-
OCL
RIA
RIE
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c357t-42f3d6ec978c86cddd2c193a11a3ef59576f6daeae537871859b861dac35e3003
IEDL.DBID RIE
ISSN 2379-8858
IngestDate Sun Jun 29 16:55:26 EDT 2025
Thu Apr 24 23:11:51 EDT 2025
Wed Jul 16 16:45:44 EDT 2025
Wed Aug 27 02:14:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c357t-42f3d6ec978c86cddd2c193a11a3ef59576f6daeae537871859b861dac35e3003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9255-0752
0000-0003-1327-0221
0000-0001-6420-5898
0000-0002-3851-9890
PQID 2688684076
PQPubID 4437213
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_TIV_2021_3123341
crossref_primary_10_1109_TIV_2021_3123341
proquest_journals_2688684076
ieee_primary_9591322
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on intelligent vehicles
PublicationTitleAbbrev TIV
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
(ref1) 2021
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref25
  doi: 10.1109/CEC.2014.6900485
– ident: ref20
  doi: 10.1109/TITS.2016.2604240
– ident: ref9
  doi: 10.1109/TCST.2008.2012116
– year: 2021
  ident: ref1
  article-title: Crash Stats: Early Estimate of Motor Vehicle Traffic Fatalities for the First Half (January- June) of 2021
– ident: ref19
  doi: 10.1109/TVT.2016.2555853
– ident: ref21
  doi: 10.15607/rss.2013.ix.031
– ident: ref4
  doi: 10.1109/TIV.2020.3027717
– ident: ref18
  doi: 10.1016/j.eswa.2018.01.050
– ident: ref12
  doi: 10.1109/TMECH.2015.2493980
– ident: ref23
  doi: 10.1007/s11370-020-00314-x
– ident: ref6
  doi: 10.1109/TITS.2019.2913998
– ident: ref22
  doi: 10.1109/TIE.2019.2898599
– ident: ref26
  doi: 10.1109/TIE.2018.2874587
– ident: ref15
  doi: 10.1109/TITS.2014.2366974
– ident: ref10
  doi: 10.3390/s18020571
– ident: ref11
  doi: 10.1109/TITS.2012.2198214
– ident: ref7
  doi: 10.1109/TITS.2015.2498841
– ident: ref14
  doi: 10.1177/027836498600500106
– ident: ref24
  doi: 10.1109/TVT.2020.3046520
– ident: ref8
  doi: 10.1109/3477.678626
– ident: ref5
  doi: 10.1109/TIV.2017.2788208
– ident: ref13
  doi: 10.1109/TVT.2020.2979623
– ident: ref2
  doi: 10.1049/iet-its.2019.0606
– ident: ref16
  doi: 10.3390/s19153318
– ident: ref3
  doi: 10.1109/TIV.2018.2804162
– ident: ref17
  doi: 10.1109/TITS.2018.2841967
SSID ssj0001682809
Score 2.4891875
Snippet With the rapid development of autonomous driving technology, collision avoidance has become a research hotspot since it has the potential to increase safety....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 263
SubjectTerms Algorithms
artificial potential field
Autonomous vehicles
Barriers
Collision avoidance
enhanced fireworks algorithm
Heuristic algorithms
Mathematical models
Optimization
Path planning
Potential fields
Roads
Safety
Smoothness
Vehicle dynamics
Vehicles
Title An Optimization-Based Path Planning Approach for Autonomous Vehicles Using the DynEFWA-Artificial Potential Field
URI https://ieeexplore.ieee.org/document/9591322
https://www.proquest.com/docview/2688684076
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp_ZAobTqlg_50AsS3t3EsWMfA2VFK1E4AOUWOf4QUkuWdpMD_HrGTrItbVVx88GWLY3tmWe_eQPwQVQqeIaKGsUszfxUUc29oIlXPjHK5zLmrZ1-ESeX2edrfr0CB8tcGOdcJJ-5cWjGv3w7N214KpsorgJ4WoVVBG5drtav9xSB2CEyOlKWKyoll8Ov5FRNLj5dIRZME4SoKWNZ8sQLxbIqf93F0cHMXsHpsLSOV_Jt3DbV2Dz8odr43LVvwHofaZKi2xqbsOLq1_DyN_3BLfhR1OQM74zbPhmTHqJPs-Qco0IyVDMiRa86TjC8JUXbhCyIebsgV-4mUupIZB0QDCTJx_v6ePa1oGHOTpmCnM-bwEfC1ixw5d7A5ez44uiE9jUYqGE8b2iWemaFMwg2jRTGWpsajPl0kmjmPFcIV7yw2mnHGZ599P6qkiKxGoc7hlfGW1ir57V7B0Rrm4lE86BwH1Cc8lqmurKGI0jOTD6CyWCT0vQC5aFOxvcyApWpKtGKZbBi2VtxBPvLEXedOMd_-m4Foyz79fYYwc5g9rI_vYsyFVIGEZxcvP_3qG14kYY0iPgaswNrzc_W7WJw0lR7cVc-Anef3-0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvApioYAPXJDw7jqOHfsYoKstdEsP29Jb5PghJCALNDnAr2fsJMtTiJsPtmxpbM989jffADyRtY6eoaZWc0fzMNfUiCApCzowq0OhUt7a6lguT_NX5-J8B55tc2G894l85qexmf7y3cZ28alspoWO4OkSXEa_L1ifrfXjRUUiekicjowXmiol1PgvOdez9eEZosGMIUjNOM_ZL34oFVb54zZOLmZxA1bj4npmyftp19ZT--033cb_Xf1NuD7EmqTsN8ct2PHNbbj2kwLhHnwuG_IGb42PQzomfY5ezZETjAvJWM-IlIPuOMEAl5RdG_MgNt0FOfPvEqmOJN4BwVCSvPzaHCzeljTO2WtTkJNNGxlJ2FpEttwdOF0crF8s6VCFgVouipbmWeBOeotw0yppnXOZxajPMGa4D0IjYAnSGW-84Hj60f_rWknmDA73HC-Nu7DbbBp_D4gxLpfMiKhxH3GcDkZlpnZWIEzObTGB2WiTyg4S5bFSxocqQZW5rtCKVbRiNVhxAk-3Iz718hz_6LsXjbLtN9hjAvuj2avh_F5UmVQqyuAU8v7fRz2GK8v16qg6Ojx-_QCuZjEpIr3N7MNu-6XzDzFUaetHaYd-B04z4zY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimization-Based+Path+Planning+Approach+for+Autonomous+Vehicles+Using+the+DynEFWA-Artificial+Potential+Field&rft.jtitle=IEEE+transactions+on+intelligent+vehicles&rft.au=Li%2C+Hongcai&rft.au=Liu%2C+Wenjie&rft.au=Yang%2C+Chao&rft.au=Wang%2C+Weida&rft.date=2022-06-01&rft.issn=2379-8858&rft.eissn=2379-8904&rft.volume=7&rft.issue=2&rft.spage=263&rft.epage=272&rft_id=info:doi/10.1109%2FTIV.2021.3123341&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIV_2021_3123341
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8858&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8858&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8858&client=summon