An Optimization-Based Path Planning Approach for Autonomous Vehicles Using the DynEFWA-Artificial Potential Field
With the rapid development of autonomous driving technology, collision avoidance has become a research hotspot since it has the potential to increase safety. To obtain a collision-free path, the artificial potential field (APF) is widely used as a path planning method. APF is capable of establishing...
Saved in:
Published in | IEEE transactions on intelligent vehicles Vol. 7; no. 2; pp. 263 - 272 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the rapid development of autonomous driving technology, collision avoidance has become a research hotspot since it has the potential to increase safety. To obtain a collision-free path, the artificial potential field (APF) is widely used as a path planning method. APF is capable of establishing functional relationships between the vehicle and surrounding objects. However, the function features of the traditional APF method can cause autonomous vehicles to fall into the local minimum, and the generated zigzag path may be difficult to follow. Motivated by these challenges, this paper proposes a real-time path planning method for autonomous vehicles using the dynamic enhanced firework algorithm-APF. Firstly, to improve the safety and smoothness of the planned path by the traditional APF method, the constraints of the vehicle dynamics and different types of obstacles are taken into consideration. Secondly, an optimization problem is formulated to find an optimal path with the least cost in the driving area. Finally, the proposed method is verified with both a simulation and a hardware-in-loop test environment. The results show that the studied autonomous vehicle successfully avoids obstacles and arrives at the goal position by using the proposed path-planning method, and the path smoothness is improved. |
---|---|
AbstractList | With the rapid development of autonomous driving technology, collision avoidance has become a research hotspot since it has the potential to increase safety. To obtain a collision-free path, the artificial potential field (APF) is widely used as a path planning method. APF is capable of establishing functional relationships between the vehicle and surrounding objects. However, the function features of the traditional APF method can cause autonomous vehicles to fall into the local minimum, and the generated zigzag path may be difficult to follow. Motivated by these challenges, this paper proposes a real-time path planning method for autonomous vehicles using the dynamic enhanced firework algorithm-APF. Firstly, to improve the safety and smoothness of the planned path by the traditional APF method, the constraints of the vehicle dynamics and different types of obstacles are taken into consideration. Secondly, an optimization problem is formulated to find an optimal path with the least cost in the driving area. Finally, the proposed method is verified with both a simulation and a hardware-in-loop test environment. The results show that the studied autonomous vehicle successfully avoids obstacles and arrives at the goal position by using the proposed path-planning method, and the path smoothness is improved. |
Author | Qie, Tianqi Yang, Chao Xiang, Changle Li, Hongcai Liu, Wenjie Wang, Weida |
Author_xml | – sequence: 1 givenname: Hongcai surname: Li fullname: Li, Hongcai email: armwtank@bit.edu.cn organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Wenjie orcidid: 0000-0003-1327-0221 surname: Liu fullname: Liu, Wenjie email: lwj_3026@163.com organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China – sequence: 3 givenname: Chao orcidid: 0000-0001-9255-0752 surname: Yang fullname: Yang, Chao email: cyang@bit.edu.cn organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China – sequence: 4 givenname: Weida orcidid: 0000-0001-6420-5898 surname: Wang fullname: Wang, Weida email: wangwd0430@163.com organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China – sequence: 5 givenname: Tianqi orcidid: 0000-0002-3851-9890 surname: Qie fullname: Qie, Tianqi email: qiebit@sina.com organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China – sequence: 6 givenname: Changle surname: Xiang fullname: Xiang, Changle email: xiangcl@bit.edu.cn organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China |
BookMark | eNp9kDtPwzAURi0EEs8dicUSc4ofjWOP4VFAqtQObRkj49xQV6ldbHcov56EAgMD0_2G79x7dU7RofMOELqkZEApUTez58WAEUYHnDLOh_QAnTBeqEwqMjz8yTKXx-gixhUhhArJJFEn6L10eLJJdm0_dLLeZbc6Qo2nOi3xtNXOWfeGy80meG2WuPEBl9vknV_7bcQLWFrTQsTz2NfSEvD9zj2MXsqsDMk21ljd4qlP4FKfRhba-hwdNbqNcPE9z9B89DC7e8rGk8fnu3KcGZ4XKRuyhtcCjCqkkcLUdc0MVVxTqjk0ucoL0Yhag4acF7KgMlevUtBadzhwQvgZut7v7X5_30JM1cpvg-tOVkxIKeSQFKJriX3LBB9jgKYyNn2ZSEHbtqKk6g1XneGqN1x9G-5A8gfcBLvWYfcfcrVHLAD81lWuKGeMfwJWQoh9 |
CODEN | ITIVBL |
CitedBy_id | crossref_primary_10_1109_TIV_2023_3280599 crossref_primary_10_1007_s10489_024_05915_y crossref_primary_10_3390_agronomy14112473 crossref_primary_10_1016_j_knosys_2024_111548 crossref_primary_10_1016_j_cie_2023_109767 crossref_primary_10_1016_j_ins_2023_119609 crossref_primary_10_1109_TVT_2022_3223727 crossref_primary_10_1109_TIV_2023_3261274 crossref_primary_10_1109_TSMC_2022_3228934 crossref_primary_10_5194_ms_15_613_2024 crossref_primary_10_1002_aisy_202300269 crossref_primary_10_1109_TIV_2023_3236150 crossref_primary_10_1109_TITS_2024_3450963 crossref_primary_10_1109_ACCESS_2024_3443196 crossref_primary_10_1109_TITS_2024_3388380 crossref_primary_10_1007_s40747_024_01557_2 crossref_primary_10_1109_ACCESS_2025_3549081 crossref_primary_10_26599_JICV_2023_9210025 crossref_primary_10_1109_TIV_2023_3234253 crossref_primary_10_1016_j_eswa_2024_123571 crossref_primary_10_1109_TIV_2023_3234370 crossref_primary_10_1109_TIV_2023_3337417 crossref_primary_10_3390_drones8090506 crossref_primary_10_1109_TIV_2023_3317957 crossref_primary_10_1109_ACCESS_2024_3520999 crossref_primary_10_1109_TIV_2022_3216318 crossref_primary_10_3390_rs15020487 crossref_primary_10_1016_j_eswa_2024_123603 crossref_primary_10_1016_j_jfranklin_2024_106709 crossref_primary_10_1016_j_measurement_2023_113029 crossref_primary_10_1109_ACCESS_2023_3344218 crossref_primary_10_1186_s10033_025_01190_1 crossref_primary_10_1016_j_aej_2024_08_001 crossref_primary_10_3390_en15051769 crossref_primary_10_1016_j_mechmachtheory_2023_105406 crossref_primary_10_1109_TITS_2022_3230680 crossref_primary_10_1016_j_ymssp_2024_111126 crossref_primary_10_1016_j_eswa_2024_123481 crossref_primary_10_1093_ijlct_ctae254 crossref_primary_10_1177_01423312241264860 crossref_primary_10_3390_su152115377 crossref_primary_10_3390_drones9010039 crossref_primary_10_1109_JIOT_2023_3289793 crossref_primary_10_1109_TTE_2024_3374512 crossref_primary_10_3390_s23187918 crossref_primary_10_1016_j_geits_2023_100092 crossref_primary_10_1109_TIV_2022_3225340 crossref_primary_10_1049_itr2_12595 crossref_primary_10_1109_TVT_2024_3380745 crossref_primary_10_1109_TIV_2023_3245612 crossref_primary_10_1109_TIV_2023_3245615 crossref_primary_10_1109_TIV_2023_3348484 crossref_primary_10_1109_ACCESS_2024_3416670 crossref_primary_10_1007_s10489_024_06074_w crossref_primary_10_3390_s25020395 crossref_primary_10_2514_1_G007691 crossref_primary_10_1007_s12239_023_0102_x crossref_primary_10_1109_TIV_2023_3252571 crossref_primary_10_3390_app14114613 crossref_primary_10_1109_ACCESS_2024_3443869 crossref_primary_10_1109_TVT_2024_3454315 crossref_primary_10_1109_JSEN_2024_3516124 crossref_primary_10_1109_TIV_2023_3283055 crossref_primary_10_1016_j_ifacol_2024_11_145 crossref_primary_10_1109_ACCESS_2023_3338683 crossref_primary_10_1016_j_trc_2024_104654 crossref_primary_10_1109_TIV_2023_3296435 crossref_primary_10_1109_TIV_2023_3275993 |
Cites_doi | 10.1109/CEC.2014.6900485 10.1109/TITS.2016.2604240 10.1109/TCST.2008.2012116 10.1109/TVT.2016.2555853 10.15607/rss.2013.ix.031 10.1109/TIV.2020.3027717 10.1016/j.eswa.2018.01.050 10.1109/TMECH.2015.2493980 10.1007/s11370-020-00314-x 10.1109/TITS.2019.2913998 10.1109/TIE.2019.2898599 10.1109/TIE.2018.2874587 10.1109/TITS.2014.2366974 10.3390/s18020571 10.1109/TITS.2012.2198214 10.1109/TITS.2015.2498841 10.1177/027836498600500106 10.1109/TVT.2020.3046520 10.1109/3477.678626 10.1109/TIV.2017.2788208 10.1109/TVT.2020.2979623 10.1049/iet-its.2019.0606 10.3390/s19153318 10.1109/TIV.2018.2804162 10.1109/TITS.2018.2841967 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TIV.2021.3123341 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2379-8904 |
EndPage | 272 |
ExternalDocumentID | 10_1109_TIV_2021_3123341 9591322 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51975048; U1764257 funderid: 10.13039/501100001809 – fundername: Beijing Institute of Technology Research Fund Program for Young Scholars funderid: 10.13039/501100012236 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF O9- OCL RIA RIE AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c357t-42f3d6ec978c86cddd2c193a11a3ef59576f6daeae537871859b861dac35e3003 |
IEDL.DBID | RIE |
ISSN | 2379-8858 |
IngestDate | Sun Jun 29 16:55:26 EDT 2025 Thu Apr 24 23:11:51 EDT 2025 Wed Jul 16 16:45:44 EDT 2025 Wed Aug 27 02:14:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c357t-42f3d6ec978c86cddd2c193a11a3ef59576f6daeae537871859b861dac35e3003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9255-0752 0000-0003-1327-0221 0000-0001-6420-5898 0000-0002-3851-9890 |
PQID | 2688684076 |
PQPubID | 4437213 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1109_TIV_2021_3123341 crossref_primary_10_1109_TIV_2021_3123341 proquest_journals_2688684076 ieee_primary_9591322 |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on intelligent vehicles |
PublicationTitleAbbrev | TIV |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 (ref1) 2021 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref25 doi: 10.1109/CEC.2014.6900485 – ident: ref20 doi: 10.1109/TITS.2016.2604240 – ident: ref9 doi: 10.1109/TCST.2008.2012116 – year: 2021 ident: ref1 article-title: Crash Stats: Early Estimate of Motor Vehicle Traffic Fatalities for the First Half (January- June) of 2021 – ident: ref19 doi: 10.1109/TVT.2016.2555853 – ident: ref21 doi: 10.15607/rss.2013.ix.031 – ident: ref4 doi: 10.1109/TIV.2020.3027717 – ident: ref18 doi: 10.1016/j.eswa.2018.01.050 – ident: ref12 doi: 10.1109/TMECH.2015.2493980 – ident: ref23 doi: 10.1007/s11370-020-00314-x – ident: ref6 doi: 10.1109/TITS.2019.2913998 – ident: ref22 doi: 10.1109/TIE.2019.2898599 – ident: ref26 doi: 10.1109/TIE.2018.2874587 – ident: ref15 doi: 10.1109/TITS.2014.2366974 – ident: ref10 doi: 10.3390/s18020571 – ident: ref11 doi: 10.1109/TITS.2012.2198214 – ident: ref7 doi: 10.1109/TITS.2015.2498841 – ident: ref14 doi: 10.1177/027836498600500106 – ident: ref24 doi: 10.1109/TVT.2020.3046520 – ident: ref8 doi: 10.1109/3477.678626 – ident: ref5 doi: 10.1109/TIV.2017.2788208 – ident: ref13 doi: 10.1109/TVT.2020.2979623 – ident: ref2 doi: 10.1049/iet-its.2019.0606 – ident: ref16 doi: 10.3390/s19153318 – ident: ref3 doi: 10.1109/TIV.2018.2804162 – ident: ref17 doi: 10.1109/TITS.2018.2841967 |
SSID | ssj0001682809 |
Score | 2.4891875 |
Snippet | With the rapid development of autonomous driving technology, collision avoidance has become a research hotspot since it has the potential to increase safety.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 263 |
SubjectTerms | Algorithms artificial potential field Autonomous vehicles Barriers Collision avoidance enhanced fireworks algorithm Heuristic algorithms Mathematical models Optimization Path planning Potential fields Roads Safety Smoothness Vehicle dynamics Vehicles |
Title | An Optimization-Based Path Planning Approach for Autonomous Vehicles Using the DynEFWA-Artificial Potential Field |
URI | https://ieeexplore.ieee.org/document/9591322 https://www.proquest.com/docview/2688684076 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp_ZAobTqlg_50AsS3t3EsWMfA2VFK1E4AOUWOf4QUkuWdpMD_HrGTrItbVVx88GWLY3tmWe_eQPwQVQqeIaKGsUszfxUUc29oIlXPjHK5zLmrZ1-ESeX2edrfr0CB8tcGOdcJJ-5cWjGv3w7N214KpsorgJ4WoVVBG5drtav9xSB2CEyOlKWKyoll8Ov5FRNLj5dIRZME4SoKWNZ8sQLxbIqf93F0cHMXsHpsLSOV_Jt3DbV2Dz8odr43LVvwHofaZKi2xqbsOLq1_DyN_3BLfhR1OQM74zbPhmTHqJPs-Qco0IyVDMiRa86TjC8JUXbhCyIebsgV-4mUupIZB0QDCTJx_v6ePa1oGHOTpmCnM-bwEfC1ixw5d7A5ez44uiE9jUYqGE8b2iWemaFMwg2jRTGWpsajPl0kmjmPFcIV7yw2mnHGZ599P6qkiKxGoc7hlfGW1ir57V7B0Rrm4lE86BwH1Cc8lqmurKGI0jOTD6CyWCT0vQC5aFOxvcyApWpKtGKZbBi2VtxBPvLEXedOMd_-m4Foyz79fYYwc5g9rI_vYsyFVIGEZxcvP_3qG14kYY0iPgaswNrzc_W7WJw0lR7cVc-Anef3-0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvApioYAPXJDw7jqOHfsYoKstdEsP29Jb5PghJCALNDnAr2fsJMtTiJsPtmxpbM989jffADyRtY6eoaZWc0fzMNfUiCApCzowq0OhUt7a6lguT_NX5-J8B55tc2G894l85qexmf7y3cZ28alspoWO4OkSXEa_L1ifrfXjRUUiekicjowXmiol1PgvOdez9eEZosGMIUjNOM_ZL34oFVb54zZOLmZxA1bj4npmyftp19ZT--033cb_Xf1NuD7EmqTsN8ct2PHNbbj2kwLhHnwuG_IGb42PQzomfY5ezZETjAvJWM-IlIPuOMEAl5RdG_MgNt0FOfPvEqmOJN4BwVCSvPzaHCzeljTO2WtTkJNNGxlJ2FpEttwdOF0crF8s6VCFgVouipbmWeBOeotw0yppnXOZxajPMGa4D0IjYAnSGW-84Hj60f_rWknmDA73HC-Nu7DbbBp_D4gxLpfMiKhxH3GcDkZlpnZWIEzObTGB2WiTyg4S5bFSxocqQZW5rtCKVbRiNVhxAk-3Iz718hz_6LsXjbLtN9hjAvuj2avh_F5UmVQqyuAU8v7fRz2GK8v16qg6Ojx-_QCuZjEpIr3N7MNu-6XzDzFUaetHaYd-B04z4zY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimization-Based+Path+Planning+Approach+for+Autonomous+Vehicles+Using+the+DynEFWA-Artificial+Potential+Field&rft.jtitle=IEEE+transactions+on+intelligent+vehicles&rft.au=Li%2C+Hongcai&rft.au=Liu%2C+Wenjie&rft.au=Yang%2C+Chao&rft.au=Wang%2C+Weida&rft.date=2022-06-01&rft.issn=2379-8858&rft.eissn=2379-8904&rft.volume=7&rft.issue=2&rft.spage=263&rft.epage=272&rft_id=info:doi/10.1109%2FTIV.2021.3123341&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIV_2021_3123341 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-8858&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-8858&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-8858&client=summon |