An Optimization-Based Path Planning Approach for Autonomous Vehicles Using the DynEFWA-Artificial Potential Field

With the rapid development of autonomous driving technology, collision avoidance has become a research hotspot since it has the potential to increase safety. To obtain a collision-free path, the artificial potential field (APF) is widely used as a path planning method. APF is capable of establishing...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent vehicles Vol. 7; no. 2; pp. 263 - 272
Main Authors Li, Hongcai, Liu, Wenjie, Yang, Chao, Wang, Weida, Qie, Tianqi, Xiang, Changle
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:With the rapid development of autonomous driving technology, collision avoidance has become a research hotspot since it has the potential to increase safety. To obtain a collision-free path, the artificial potential field (APF) is widely used as a path planning method. APF is capable of establishing functional relationships between the vehicle and surrounding objects. However, the function features of the traditional APF method can cause autonomous vehicles to fall into the local minimum, and the generated zigzag path may be difficult to follow. Motivated by these challenges, this paper proposes a real-time path planning method for autonomous vehicles using the dynamic enhanced firework algorithm-APF. Firstly, to improve the safety and smoothness of the planned path by the traditional APF method, the constraints of the vehicle dynamics and different types of obstacles are taken into consideration. Secondly, an optimization problem is formulated to find an optimal path with the least cost in the driving area. Finally, the proposed method is verified with both a simulation and a hardware-in-loop test environment. The results show that the studied autonomous vehicle successfully avoids obstacles and arrives at the goal position by using the proposed path-planning method, and the path smoothness is improved.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2379-8858
2379-8904
DOI:10.1109/TIV.2021.3123341