Wearable Brain-Computer Interface Instrumentation for Robot-Based Rehabilitation by Augmented Reality
An instrument for remote control of the robot by wearable brain-computer interface (BCI) is proposed for rehabilitating children with attention-deficit/hyperactivity disorder (ADHD). Augmented reality (AR) glasses generate flickering stimuli, and a single-channel electroencephalographic BCI detects...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 69; no. 9; pp. 6362 - 6371 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An instrument for remote control of the robot by wearable brain-computer interface (BCI) is proposed for rehabilitating children with attention-deficit/hyperactivity disorder (ADHD). Augmented reality (AR) glasses generate flickering stimuli, and a single-channel electroencephalographic BCI detects the elicited steady-state visual evoked potentials (SSVEPs). This allows benefiting from the SSVEP robustness by leaving available the view of robot movements. Together with the lack of training, a single channel maximizes the device's wearability, fundamental for the acceptance by ADHD children. Effectively controlling the movements of a robot through a new channel enhances rehabilitation engagement and effectiveness. A case study at an accredited rehabilitation center on ten healthy adult subjects highlighted an average accuracy higher than 83%, with information transfer rate (ITR) up to 39 b/min. Preliminary further tests on four ADHD patients between six- and eight-years old provided highly positive feedback on device acceptance and attentional performance. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9456 1557-9662 |
DOI: | 10.1109/TIM.2020.2970846 |