Stateful Reconfigurable Logic via a Single-Voltage-Gated Spin Hall-Effect Driven Magnetic Tunnel Junction in a Spintronic Memory

Stateful in-memory logic (IML) is a promising paradigm to realize the unity of data storage and processing in the same die, exhibiting great feasibility to break the bottleneck of the conventional von Neumann architecture. On the roadmap toward developing such a logic platform, a critical step is th...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 64; no. 10; pp. 4295 - 4301
Main Authors He Zhang, Wang Kang, Lezhi Wang, Wang, Kang L., Weisheng Zhao
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Stateful in-memory logic (IML) is a promising paradigm to realize the unity of data storage and processing in the same die, exhibiting great feasibility to break the bottleneck of the conventional von Neumann architecture. On the roadmap toward developing such a logic platform, a critical step is the effective and efficient realization of a complete set of logic functions within a memory. In this paper, we report a realization of stateful reconfigurable logic functions via a single three-terminal magnetic tunnel junction (MTJ) device within a spintronic memory by exploiting the novel voltage-gated spin Hall-effect driven magnetization switching mechanism. This proposed reconfigurable IML methodology can be implemented within either a typical memory array or a cross-point array architecture. The feasibility of the proposed approach is successfully demonstrated with hybrid MTJ/CMOS circuit simulations. We believe our work may promote the research and development of the revolutionary IML for future non-von Neumann architectures.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2017.2726544