A drug candidate for Alzheimer’s and Huntington’s disease, PBT2, can be repurposed to render Neisseria gonorrhoeae susceptible to natural cationic antimicrobial peptides

Abstract Background Neisseria gonorrhoeae is a Gram-negative bacterial pathogen that causes gonorrhoea. No vaccine is available to prevent gonorrhoea and the emergence of MDR N. gonorrhoeae strains represents an immediate public health threat. Objectives To evaluate whether PBT2/zinc may sensitize M...

Full description

Saved in:
Bibliographic Details
Published inJournal of antimicrobial chemotherapy Vol. 76; no. 11; pp. 2850 - 2853
Main Authors Jen, Freda E -C, El-Deeb, Ibrahim M, Zalucki, Yaramah M, Edwards, Jennifer L, Walker, Mark J, von Itzstein, Mark, Jennings, Michael P
Format Journal Article
LanguageEnglish
Published England Oxford University Press 11.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Background Neisseria gonorrhoeae is a Gram-negative bacterial pathogen that causes gonorrhoea. No vaccine is available to prevent gonorrhoea and the emergence of MDR N. gonorrhoeae strains represents an immediate public health threat. Objectives To evaluate whether PBT2/zinc may sensitize MDR N. gonorrhoeae to natural cationic antimicrobial peptides. Methods MDR strains that contain differing resistance mechanisms against numerous antibiotics were tested in MIC assays. MIC assays were performed using the broth microdilution method according to CLSI guidelines in a microtitre plate. Serially diluted LL-37 or PG-1 was tested in combination with a sub-inhibitory concentration of PBT2/zinc. Serially diluted tetracycline was also tested with sub-inhibitory concentrations of PBT2/zinc and LL-37. SWATH-MS proteomic analysis of N. gonorrhoeae treated with PBT2/zinc, LL-37 and/or tetracycline was performed to determine the mechanism(s) of N. gonorrhoeae susceptibility to antibiotics and peptides. Results Sub-inhibitory concentrations of LL-37 and PBT2/zinc synergized to render strain WHO-Z susceptible to tetracycline, whereas the killing effect of PG-1 and PBT2/zinc was additive. SWATH-MS proteomic analysis suggested that PBT2/zinc most likely leads to a loss of membrane integrity and increased protein misfolding and, in turn, results in bacterial death. Conclusions Here we show that PBT2, a candidate Alzheimer’s and Huntington’s disease drug, can be repurposed to render MDR N. gonorrhoeae more susceptible to the endogenous antimicrobial peptides LL-37 and PG-1. In the presence of LL-37, PBT2/zinc can synergize with tetracycline to restore tetracycline susceptibility to gonococci resistant to this antibiotic.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0305-7453
1460-2091
DOI:10.1093/jac/dkab291