PVT Variation Tolerant Current Source With On-Chip Digital Self-Calibration
A current source with a small current error has been proposed to maintain the bandwidth of the system without an increase in power consumption for a margin. It minimizes the current error under process, supply voltage, and temperature (PVT) variations. Because the on-resistance of the nMOS array is...
Saved in:
Published in | IEEE transactions on very large scale integration (VLSI) systems Vol. 20; no. 4; pp. 737 - 741 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.04.2012
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A current source with a small current error has been proposed to maintain the bandwidth of the system without an increase in power consumption for a margin. It minimizes the current error under process, supply voltage, and temperature (PVT) variations. Because the on-resistance of the nMOS array is self-calibrated digitally by an on-chip digital PVT detector, a current error of only ±2% is achieved. The current source has been implemented in an 80-nm CMOS process, occupies 0.018 mm 2 and consumes 94.9 μW at a supply voltage of 1.0 V. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
ISSN: | 1063-8210 1557-9999 |
DOI: | 10.1109/TVLSI.2011.2109971 |