Impact of Ni on the thermophysical and thermodynamic properties of Fe–C–Ni based alloys

Three model alloys based on Fe-C-Ni were studied containing carbon between 0.338 and 0.382 wt. % and nickel between 1.084 and 4.478 wt. %. Phase transition temperatures, heat capacity, enthalpy change, heat of fusion, coefficient of thermal expansion, and density were experimentally and theoreticall...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials research and technology Vol. 20; pp. 4318 - 4332
Main Authors Drozdová, Ľubomíra, Smetana, Bedřich, Machů, Mario, Novák, Vlastimil, Vontorová, Jiřina, Zlá, Simona, Kawuloková, Monika, Řeháčková, Lenka, Sorokina, Svetlana
Format Journal Article
LanguageEnglish
Published Elsevier 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Three model alloys based on Fe-C-Ni were studied containing carbon between 0.338 and 0.382 wt. % and nickel between 1.084 and 4.478 wt. %. Phase transition temperatures, heat capacity, enthalpy change, heat of fusion, coefficient of thermal expansion, and density were experimentally and theoretically determined in the high-temperature area from 1000 °C to 1595 °C. A number of techniques, namely differential thermal analysis (DTA), differential scanning calorimetry (DSC), and dilatometry, were used in this study, and the heat of fusion was determined by two approaches, that is, from the DSC peak area and from the enthalpy change. The experimental data were compared and discussed with the calculation results obtained using SW IDS, JMatPro, and Thermo-Calc operating with the commercially available TCFE8 thermodynamic database. The obtained experimental results show that the liquidus temperature and the coefficient of thermal expansion decrease with increasing nickel content. On the contrary, the density and heat of fusion values derived from the DSC peak increase with increasing nickel content. Furthermore, an ambiguous influence of nickel on the change in solidus temperature, heat capacity, enthalpy change, and heat of fusion obtained from the enthalpy change was observed.
ISSN:2238-7854
DOI:10.1016/j.jmrt.2022.08.159