Effective reinforcement ratio of RC beams: Validation of modelling assumptions with high‐resolution strain data
Concrete tensile stresses influence the cracking behaviour and the stiffness of reinforced concrete (RC) members. Most design codes account for this tension stiffening effect using an effective reinforcement ratio. Although this ratio has a significant influence on the design of RC structures, its q...
Saved in:
Published in | Structural concrete : journal of the FIB Vol. 23; no. 3; pp. 1353 - 1369 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY‐VCH Verlag GmbH & Co. KGaA
01.06.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Concrete tensile stresses influence the cracking behaviour and the stiffness of reinforced concrete (RC) members. Most design codes account for this tension stiffening effect using an effective reinforcement ratio. Although this ratio has a significant influence on the design of RC structures, its quantification is controversial in many cases, and typically relies on empirical geometry‐based expressions. One main reason for this knowledge gap is that the area of concrete in tension can only be verified indirectly, for example, through crack widths and spacings and using a suitable mechanical model. This indirect validation is subject to considerable uncertainty as it depends on parameters that scatter (e.g., bond stresses and the concrete tensile strength), and further assumptions relating internal stresses to the applied loads are required. This article outlines how refined measurements of the reinforcing steel strains and the concrete deformations in the compression zone, combining distributed fibre optic sensing (DFOS) and digital image correlation (DIC), can be used in order to obtain a more reliable quantification of the parameters affecting tension stiffening and hence, the effective reinforcement ratio. Selected models are validated against experimental data of an RC beam tested under four‐point bending, underlining the potential of DFOS and DIC as valuable tools for a better understanding of RC structures and the enhancement of mechanical models. |
---|---|
AbstractList | Concrete tensile stresses influence the cracking behaviour and the stiffness of reinforced concrete (RC) members. Most design codes account for this tension stiffening effect using an effective reinforcement ratio. Although this ratio has a significant influence on the design of RC structures, its quantification is controversial in many cases, and typically relies on empirical geometry‐based expressions. One main reason for this knowledge gap is that the area of concrete in tension can only be verified indirectly, for example, through crack widths and spacings and using a suitable mechanical model. This indirect validation is subject to considerable uncertainty as it depends on parameters that scatter (e.g., bond stresses and the concrete tensile strength), and further assumptions relating internal stresses to the applied loads are required. This article outlines how refined measurements of the reinforcing steel strains and the concrete deformations in the compression zone, combining distributed fibre optic sensing (DFOS) and digital image correlation (DIC), can be used in order to obtain a more reliable quantification of the parameters affecting tension stiffening and hence, the effective reinforcement ratio. Selected models are validated against experimental data of an RC beam tested under four‐point bending, underlining the potential of DFOS and DIC as valuable tools for a better understanding of RC structures and the enhancement of mechanical models. |
Author | Galkovski, Tena Kaufmann, Walter Mata‐Falcón, Jaime |
Author_xml | – sequence: 1 givenname: Tena orcidid: 0000-0002-1093-4603 surname: Galkovski fullname: Galkovski, Tena email: galkovski@ibk.baug.ethz.ch organization: Institute of Structural Engineering, ETH Zurich – sequence: 2 givenname: Jaime orcidid: 0000-0001-8701-4410 surname: Mata‐Falcón fullname: Mata‐Falcón, Jaime email: mata-falcon@ibk.baug.ethz.ch organization: Institute of Structural Engineering, ETH Zurich – sequence: 3 givenname: Walter surname: Kaufmann fullname: Kaufmann, Walter email: kaufmann@ibk.baug.ethz.ch organization: Institute of Structural Engineering, ETH Zurich |
BookMark | eNqFkN1KwzAYhoMouE1PPQ543Jm06ZJ6JmP-wGCgztOSpl-2jLbZktaxMy_Ba_RKbDdREMSjfHl5nvy8fXRc2QoQuqBkSAkJr3yj7DAkYbvhUXKEepTHNOAjJo7bmY1YwCjnp6jv_arl2znuoc1Ea1C1eQXswFTaOgUlVDV2sjYWW40fxzgDWfpr_CILk3dx1eWlzaEoTLXA0vumXHe5x1tTL_HSLJYfb-8OvC2aPe9rJ02FW1ueoRMtCw_nX-sAzW8nz-P7YDq7exjfTAMVxTwJYklAcQVRRnJGRKaISJSII6VFEoWJZHlIoowLRmWoM8I0JDTOxSiUkCsqRTRAl4dz185uGvB1urKNq9or03AkKE-oEB3FDpRy1nsHOlWm3v-xe3GRUpJ25aZduel3ua02_KWtnSml2_0tJAdhawrY_UOnT_Px7Mf9BBOekqI |
CitedBy_id | crossref_primary_10_1002_suco_202300877 crossref_primary_10_14359_51734832 crossref_primary_10_1002_suco_202400210 crossref_primary_10_1016_j_eng_2024_11_022 crossref_primary_10_1002_suco_202200963 crossref_primary_10_1016_j_conbuildmat_2022_128167 crossref_primary_10_1617_s11527_023_02222_9 crossref_primary_10_1002_suco_202200319 crossref_primary_10_1061_JSENDH_STENG_13524 crossref_primary_10_1080_17452759_2022_2041873 crossref_primary_10_1016_j_engstruct_2022_114270 |
Cites_doi | 10.14359/11325 10.1016/j.engstruct.2021.113486 10.1016/j.engstruct.2020.111309 10.1061/(ASCE)ST.1943-541X.0002614 10.1016/j.engstruct.2020.111332 10.1680/stco.2005.6.2.53 10.35789/fib.BULL.0085.Ch20 10.1061/(ASCE)ST.1943-541X.0002510 10.1016/j.conbuildmat.2020.119383 10.3390/s21051818 10.3390/s21196338 10.1177/1475921720984431 10.2208/jscej.2001.669_309 10.3390/s21227643 10.2749/101686698780488875 10.5169/SEALS-75057 10.1016/j.conbuildmat.2021.122598 10.1680/jstbu.16.00009 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of International Federation for Structural Concrete. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of International Federation for Structural Concrete. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7QQ 7SR 8BQ 8FD F28 FR3 JG9 KR7 |
DOI | 10.1002/suco.202100739 |
DatabaseName | Wiley Online Library Open Access CrossRef Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Ceramic Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1751-7648 |
EndPage | 1369 |
ExternalDocumentID | 10_1002_suco_202100739 SUCO202100739 |
Genre | article |
GroupedDBID | ..I .GA .Y3 05W 0R~ 123 1OC 24P 31~ 33P 3SF 4.4 50Z 52M 52U 8-0 8-1 8-3 8-4 8-5 930 A03 AABWP AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAUCF AAXRX AAYCA AAZKR ABCUV ABDBF ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADXNT ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BRXPI CS3 D-E D-F DCZOG DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 FEDTE G-S GODZA H.T H.X HF~ HGLYW HVGLF HZ~ ITG ITH LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ N04 N05 NF~ O66 O9- P2W P2X Q.N QB0 ROL RTT SUPJJ UB1 W8V W99 WBKPD WIH WIK WLBEL WOHZO WXSBR WYISQ XG2 ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7QQ 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c3579-5a0ec7ce3b0d408bc089c853cf89329a4d203b7841a2fb04fe915d862aedc1a83 |
IEDL.DBID | 24P |
ISSN | 1464-4177 |
IngestDate | Fri Jul 25 12:23:24 EDT 2025 Thu Apr 24 22:53:54 EDT 2025 Tue Jul 01 02:56:04 EDT 2025 Wed Jan 22 16:25:36 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3579-5a0ec7ce3b0d408bc089c853cf89329a4d203b7841a2fb04fe915d862aedc1a83 |
Notes | Discussion on this paper must be submitted within two months of the print publication. The discussion will then be published in print, along with the authors’ closure, if any, approximately nine months after the print publication. Correction added on 20 April 2022, after first online publication: CSAL funding statement has been added. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8701-4410 0000-0002-1093-4603 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsuco.202100739 |
PQID | 2681791888 |
PQPubID | 136230 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2681791888 crossref_citationtrail_10_1002_suco_202100739 crossref_primary_10_1002_suco_202100739 wiley_primary_10_1002_suco_202100739_SUCO202100739 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 2022-06-00 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: London |
PublicationTitle | Structural concrete : journal of the FIB |
PublicationYear | 2022 |
Publisher | WILEY‐VCH Verlag GmbH & Co. KGaA Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY‐VCH Verlag GmbH & Co. KGaA – name: Wiley Subscription Services, Inc |
References | 2021; 21 2021; 20 2022; 251 2012 1971; 68 1961; Heft 138 2021; 226 2020; 225 2021; 282 1950 1998; 236 2004 2020; 146 2003 2022; 21 2002 2016; 169 1978 1983; 101 2021 2020 1970; 67 2018 2005; 6 2017 1984 1983 2016 1998; 2 2013 2020; 256 2001; 2001 1998; 8 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_42_1 e_1_2_10_20_1 e_1_2_10_41_1 SIA (e_1_2_10_4_1) 2013 e_1_2_10_40_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_16_1 Lemcherreq Y (e_1_2_10_38_1) 2022; 21 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_32_1 Rehm G (e_1_2_10_11_1) 1961 e_1_2_10_31_1 International Federation for Structural Concrete (e_1_2_10_2_1) 2013 e_1_2_10_30_1 Eligehausen R (e_1_2_10_6_1) 1983 Chen WF (e_1_2_10_35_1) 1970; 67 e_1_2_10_29_1 Alvarez M (e_1_2_10_25_1) 1998 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_26_1 |
References_xml | – volume: 225 year: 2020 article-title: Combined application of distributed fibre optical and digital image correlation measurements to structural concrete experiments publication-title: Eng Struct – year: 1983 – volume: 20 start-page: 3309 issue: 6 year: 2021 end-page: 3326 article-title: Assessment and visualization of performance indicators of reinforced concrete beams by distributed optical fibre sensing publication-title: Struct Health Monit – volume: 21 year: 2022 article-title: Application of distributed fibre optical sensing in reinforced concrete elements subjected to monotonic and cyclic loadings publication-title: Sensors – volume: 67 start-page: 993 issue: 12 year: 1970 end-page: 5 article-title: Double punch test for tensile strength of concrete publication-title: ACI J – volume: 8 start-page: 287 issue: 4 year: 1998 end-page: 298 article-title: Tension chord model for structural concrete publication-title: Struct Eng Int – volume: 256 year: 2020 article-title: Automated crack detection and measurement based on digital image correlation publication-title: Construct Build Mater – year: 2003 – year: 2021 – volume: 169 start-page: 912 issue: 12 year: 2016 end-page: 924 article-title: Mechanics solutions for deflection and cracking in concrete publication-title: Proc Inst Civ Eng Struct Build – volume: 21 start-page: 6338 issue: 19 year: 2021 article-title: Long‐term performance of distributed optical fiber sensors embedded in reinforced concrete beams under sustained deflection and cyclic loading publication-title: Sensors – year: 1950 – volume: 21 start-page: 7643 issue: 22 year: 2021 article-title: Fundamental studies on the use of distributed fibre optical sensing on concrete and reinforcing bars publication-title: Sensors – year: 2016 – year: 2018 – volume: 2001 start-page: 309 issue: 669 year: 2001 end-page: 21 article-title: Experimental study on parameters in localization of concrete subjected to compression publication-title: Doboku Gakkai Ronbunshu – volume: 6 start-page: 53 issue: 2 year: 2005 end-page: 62 article-title: Models for flexural cracking in concrete: the state of the art publication-title: Struct Concr – year: 2012 – volume: Heft 138 start-page: 59 year: 1961 – volume: 68 start-page: 244 issue: 4 year: 1971 end-page: 251 article-title: Cracks formed in concrete around deformed tension bars publication-title: J Proc – volume: 146 issue: 5 year: 2020 article-title: Strength and deformation capacity of tension and flexural RC members containing steel fibers publication-title: J Struct Eng – year: 1984 – volume: 146 issue: 2 year: 2020 article-title: Analytical calculation model for predicting cracking behavior of reinforced concrete ties publication-title: J Struct Eng – year: 2002 – volume: 282 start-page: 12 year: 2021 article-title: Influence of cross section loss on the stress‐strain characteristics of corroded quenched and self‐tempered reinforcing bars publication-title: ConBuildMat – year: 2004 – year: 2020 – volume: 236 year: 1998 – volume: 101 start-page: 120 issue: 6 year: 1983 end-page: 5 article-title: Über Nachweise im Gebrauchszustand publication-title: Schweizer Ingenieur und Architekt – volume: 251 year: 2022 article-title: Refined extraction of crack characteristics in large‐scale concrete experiments based on digital image correlation publication-title: Eng Struct – volume: 2 start-page: 1169 year: 1998 end-page: 1182 – year: 2017 – start-page: 262 year: 1978 – volume: 21 start-page: 1818 issue: 5 year: 2021 article-title: A review of recent distributed optical fiber sensors applications for civil engineering structural health monitoring publication-title: Sensors – volume: 226 year: 2021 article-title: A detailed view on the rebar‐to‐concrete interaction based on refined measurement techniques publication-title: Eng Struct – year: 2013 – ident: e_1_2_10_5_1 doi: 10.14359/11325 – ident: e_1_2_10_32_1 doi: 10.1016/j.engstruct.2021.113486 – ident: e_1_2_10_41_1 – start-page: 59 volume-title: Über die Grundlagen des Verbundes zwischen Stahl und Beton year: 1961 ident: e_1_2_10_11_1 – ident: e_1_2_10_17_1 doi: 10.1016/j.engstruct.2020.111309 – ident: e_1_2_10_30_1 – ident: e_1_2_10_33_1 – ident: e_1_2_10_13_1 – ident: e_1_2_10_39_1 – volume-title: fib model code for concrete structures 2010 year: 2013 ident: e_1_2_10_2_1 – ident: e_1_2_10_10_1 – ident: e_1_2_10_29_1 doi: 10.1061/(ASCE)ST.1943-541X.0002614 – ident: e_1_2_10_14_1 doi: 10.1016/j.engstruct.2020.111332 – ident: e_1_2_10_8_1 doi: 10.1680/stco.2005.6.2.53 – ident: e_1_2_10_9_1 doi: 10.35789/fib.BULL.0085.Ch20 – volume-title: Einfluss des Verbundverhaltens auf das Verformungsvermögen von Stahlbeton year: 1998 ident: e_1_2_10_25_1 – ident: e_1_2_10_12_1 doi: 10.1061/(ASCE)ST.1943-541X.0002510 – ident: e_1_2_10_40_1 – ident: e_1_2_10_27_1 – ident: e_1_2_10_31_1 doi: 10.1016/j.conbuildmat.2020.119383 – ident: e_1_2_10_43_1 – ident: e_1_2_10_20_1 doi: 10.3390/s21051818 – ident: e_1_2_10_16_1 – ident: e_1_2_10_19_1 doi: 10.3390/s21196338 – ident: e_1_2_10_24_1 – ident: e_1_2_10_23_1 – ident: e_1_2_10_26_1 – ident: e_1_2_10_21_1 doi: 10.1177/1475921720984431 – ident: e_1_2_10_34_1 – ident: e_1_2_10_18_1 – volume: 67 start-page: 993 issue: 12 year: 1970 ident: e_1_2_10_35_1 article-title: Double punch test for tensile strength of concrete publication-title: ACI J – volume-title: Swisscode SIA 262: concrete structures year: 2013 ident: e_1_2_10_4_1 – ident: e_1_2_10_42_1 doi: 10.2208/jscej.2001.669_309 – ident: e_1_2_10_37_1 doi: 10.3390/s21227643 – ident: e_1_2_10_7_1 doi: 10.2749/101686698780488875 – ident: e_1_2_10_28_1 doi: 10.5169/SEALS-75057 – ident: e_1_2_10_36_1 doi: 10.1016/j.conbuildmat.2021.122598 – ident: e_1_2_10_15_1 doi: 10.1680/jstbu.16.00009 – ident: e_1_2_10_22_1 – ident: e_1_2_10_3_1 – volume: 21 year: 2022 ident: e_1_2_10_38_1 article-title: Application of distributed fibre optical sensing in reinforced concrete elements subjected to monotonic and cyclic loadings publication-title: Sensors – volume-title: Earthquake engineering research center, College of Engineering year: 1983 ident: e_1_2_10_6_1 |
SSID | ssj0021775 ssib035781430 |
Score | 2.302931 |
Snippet | Concrete tensile stresses influence the cracking behaviour and the stiffness of reinforced concrete (RC) members. Most design codes account for this tension... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1353 |
SubjectTerms | compatible stress field method Compression zone Concrete Cross-sectional studies cross‐sectional analysis digital image correlation Digital imaging distributed fibre optical sensors effective area of concrete in tension Euler‐Bernoulli beam theory Image compression Mathematical models Parameters plane strain assumption pure bending Reinforced concrete Reinforcement Reinforcing steels Residual stress Stiffening Stiffness Tensile strength Tension stiffening |
Title | Effective reinforcement ratio of RC beams: Validation of modelling assumptions with high‐resolution strain data |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsuco.202100739 https://www.proquest.com/docview/2681791888 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwED5Bu8CA-BWFUnlAYrKaOM4fW1WoEKKAKEXdIttxJmihaXcegWfkSfA5adoOCInRkW1Fd2f7u7PvO4DzLJOBjPBRGBeKcp1GVISxT10VC-FJaawKs5H798HNkN-O_NFKFn_BD1EF3HBl2P0aF7iQeXtJGprPFSbvMddeNm1CHfNrkT2f8ceFRSGVi2v5xUsXzA0t9S72pNw0FjSODmuvz7d-TC2x5yqCtUdQbxd2SuxIOoWy92BDj_dhe4VR8AA-CjZis4WRqbakqMrG_4hVNJlk5KlLpBZv-SV5MRC8qKiE321JHMxNJwZOGx1beyQYpiVIafz9-WUc89JOSW4rSxB8XnoIw971c_eGllUVqDLiiKkvHK1CpT3ppNyJpHKiWJlDW2UGurBY8JQ5nsTrSMEy6fBMx66fGsdH6FS5IvKOoDaejPUxEANulMclkwhKpAhFwOMwlZ4nosAg96ABdCHERJWU4_h_r0lBlswSFHpSCb0BF1X_94Js49eezYVOknLR5QkLIiRbNT59A5jV0x-zJINh96Fqnfxn0ClsMUyIsHGZJtRm07k-MzBlJlvWEltQ71z17wY_ZKvh4Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMCAeIpCAQ9ITFYTx3mxoYqqQFsQtIjNsh1nghaaducn8Bv5JficR9sBITEmcqzoHvZ3Z993CJ2nqQxkBJfCmFCE6SQiIox94qpYCE9KY1VQjdzrB50hu33xy9uEUAuT80NUCTfwDLteg4NDQro5Zw3NZgqq96hrT5tW0RoLaAi-SdlDaVLA5eJagvEiBnNDy71r1gdGmHkoeRwd2lyeb3mfmoPPRQhr96D2NtoqwCO-yrW9g1b0aBdtLlAK7qGPnI7YrGF4oi0rqrIJQGw1jccpfmxhqcVbdomfDQbPWyrBe9sTB4rTscHTRsnWIDHkaTFwGn9_fpnIvDBUnNnWEhjul-6jYft60OqQoq0CUUYcMfGFo1WotCedhDmRVE4UK7Nrq9RgFxoLllDHk3AeKWgqHZbq2PUTE_kInShXRN4Bqo3GI32IsEE3ymOSSkAlUoQiYHGYSM8TUWCge1BHpBQiVwXnOPzfK8_ZkikHofNK6HV0UY1_z9k2fh3ZKHXCC6_LOA0iYFs1QX0dUaunP2bhT8PWffV09J-PztB6Z9Dr8u5N_-4YbVCojrBJmgaqTSczfWIwy1SeWqv8AYQy47k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwMhECZaE6MH4zNWq3Iw8US6y7Ivb6ba-KyNWtMbAZY9aVu77d2f4G_0l8iwj7YHY-KRDZDNzADfDMw3CJ2mqQxkBI_CmFCE6SQiIox94qpYCE9KY1WQjfzQCa577Lbv9-ey-HN-iCrgBivD7tewwEdJ2pyRhmZTBcl71LWXTctoxd74Abcz65YWBVQuruUXL1wwN7TUu2Z7YISZRknj6NDm4nyLx9QMe84jWHsEtTfRRoEd8UWu7C20pAfbaH2OUXAHfeRsxGYLw2NtSVGVjf9hq2g8TPFTC0st3rNz_GogeF5RCb7bkjiQm44NnDY6tvaIIUyLgdL4-_PLOOaFneLMVpbA8Lx0F_XaVy-ta1JUVSDKiCMmvnC0CpX2pJMwJ5LKiWJlDm2VGuhCY8ES6ngSriMFTaXDUh27fmIcH6ET5YrI20O1wXCg9xE24EZ5TFIJoESKUAQsDhPpeSIKDHIP6oiUQuSqoByH_3vjOVky5SB0Xgm9js6q_qOcbOPXno1SJ7xYdBmnQQRkq8anryNq9fTHLPy513qsWgf_GXSCVruXbX5_07k7RGsUciNsiKaBapPxVB8ZxDKRx9YofwBFPOLr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+reinforcement+ratio+of+RC+beams%3A+Validation+of+modelling+assumptions+with+high%E2%80%90resolution+strain+data&rft.jtitle=Structural+concrete+%3A+journal+of+the+FIB&rft.au=Galkovski%2C+Tena&rft.au=Mata%E2%80%90Falc%C3%B3n%2C+Jaime&rft.au=Kaufmann%2C+Walter&rft.date=2022-06-01&rft.issn=1464-4177&rft.eissn=1751-7648&rft.volume=23&rft.issue=3&rft.spage=1353&rft.epage=1369&rft_id=info:doi/10.1002%2Fsuco.202100739&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_suco_202100739 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-4177&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-4177&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-4177&client=summon |