Effective reinforcement ratio of RC beams: Validation of modelling assumptions with high‐resolution strain data

Concrete tensile stresses influence the cracking behaviour and the stiffness of reinforced concrete (RC) members. Most design codes account for this tension stiffening effect using an effective reinforcement ratio. Although this ratio has a significant influence on the design of RC structures, its q...

Full description

Saved in:
Bibliographic Details
Published inStructural concrete : journal of the FIB Vol. 23; no. 3; pp. 1353 - 1369
Main Authors Galkovski, Tena, Mata‐Falcón, Jaime, Kaufmann, Walter
Format Journal Article
LanguageEnglish
Published Weinheim WILEY‐VCH Verlag GmbH & Co. KGaA 01.06.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Concrete tensile stresses influence the cracking behaviour and the stiffness of reinforced concrete (RC) members. Most design codes account for this tension stiffening effect using an effective reinforcement ratio. Although this ratio has a significant influence on the design of RC structures, its quantification is controversial in many cases, and typically relies on empirical geometry‐based expressions. One main reason for this knowledge gap is that the area of concrete in tension can only be verified indirectly, for example, through crack widths and spacings and using a suitable mechanical model. This indirect validation is subject to considerable uncertainty as it depends on parameters that scatter (e.g., bond stresses and the concrete tensile strength), and further assumptions relating internal stresses to the applied loads are required. This article outlines how refined measurements of the reinforcing steel strains and the concrete deformations in the compression zone, combining distributed fibre optic sensing (DFOS) and digital image correlation (DIC), can be used in order to obtain a more reliable quantification of the parameters affecting tension stiffening and hence, the effective reinforcement ratio. Selected models are validated against experimental data of an RC beam tested under four‐point bending, underlining the potential of DFOS and DIC as valuable tools for a better understanding of RC structures and the enhancement of mechanical models.
AbstractList Concrete tensile stresses influence the cracking behaviour and the stiffness of reinforced concrete (RC) members. Most design codes account for this tension stiffening effect using an effective reinforcement ratio. Although this ratio has a significant influence on the design of RC structures, its quantification is controversial in many cases, and typically relies on empirical geometry‐based expressions. One main reason for this knowledge gap is that the area of concrete in tension can only be verified indirectly, for example, through crack widths and spacings and using a suitable mechanical model. This indirect validation is subject to considerable uncertainty as it depends on parameters that scatter (e.g., bond stresses and the concrete tensile strength), and further assumptions relating internal stresses to the applied loads are required. This article outlines how refined measurements of the reinforcing steel strains and the concrete deformations in the compression zone, combining distributed fibre optic sensing (DFOS) and digital image correlation (DIC), can be used in order to obtain a more reliable quantification of the parameters affecting tension stiffening and hence, the effective reinforcement ratio. Selected models are validated against experimental data of an RC beam tested under four‐point bending, underlining the potential of DFOS and DIC as valuable tools for a better understanding of RC structures and the enhancement of mechanical models.
Author Galkovski, Tena
Kaufmann, Walter
Mata‐Falcón, Jaime
Author_xml – sequence: 1
  givenname: Tena
  orcidid: 0000-0002-1093-4603
  surname: Galkovski
  fullname: Galkovski, Tena
  email: galkovski@ibk.baug.ethz.ch
  organization: Institute of Structural Engineering, ETH Zurich
– sequence: 2
  givenname: Jaime
  orcidid: 0000-0001-8701-4410
  surname: Mata‐Falcón
  fullname: Mata‐Falcón, Jaime
  email: mata-falcon@ibk.baug.ethz.ch
  organization: Institute of Structural Engineering, ETH Zurich
– sequence: 3
  givenname: Walter
  surname: Kaufmann
  fullname: Kaufmann, Walter
  email: kaufmann@ibk.baug.ethz.ch
  organization: Institute of Structural Engineering, ETH Zurich
BookMark eNqFkN1KwzAYhoMouE1PPQ543Jm06ZJ6JmP-wGCgztOSpl-2jLbZktaxMy_Ba_RKbDdREMSjfHl5nvy8fXRc2QoQuqBkSAkJr3yj7DAkYbvhUXKEepTHNOAjJo7bmY1YwCjnp6jv_arl2znuoc1Ea1C1eQXswFTaOgUlVDV2sjYWW40fxzgDWfpr_CILk3dx1eWlzaEoTLXA0vumXHe5x1tTL_HSLJYfb-8OvC2aPe9rJ02FW1ueoRMtCw_nX-sAzW8nz-P7YDq7exjfTAMVxTwJYklAcQVRRnJGRKaISJSII6VFEoWJZHlIoowLRmWoM8I0JDTOxSiUkCsqRTRAl4dz185uGvB1urKNq9or03AkKE-oEB3FDpRy1nsHOlWm3v-xe3GRUpJ25aZduel3ua02_KWtnSml2_0tJAdhawrY_UOnT_Px7Mf9BBOekqI
CitedBy_id crossref_primary_10_1002_suco_202300877
crossref_primary_10_14359_51734832
crossref_primary_10_1002_suco_202400210
crossref_primary_10_1016_j_eng_2024_11_022
crossref_primary_10_1002_suco_202200963
crossref_primary_10_1016_j_conbuildmat_2022_128167
crossref_primary_10_1617_s11527_023_02222_9
crossref_primary_10_1002_suco_202200319
crossref_primary_10_1061_JSENDH_STENG_13524
crossref_primary_10_1080_17452759_2022_2041873
crossref_primary_10_1016_j_engstruct_2022_114270
Cites_doi 10.14359/11325
10.1016/j.engstruct.2021.113486
10.1016/j.engstruct.2020.111309
10.1061/(ASCE)ST.1943-541X.0002614
10.1016/j.engstruct.2020.111332
10.1680/stco.2005.6.2.53
10.35789/fib.BULL.0085.Ch20
10.1061/(ASCE)ST.1943-541X.0002510
10.1016/j.conbuildmat.2020.119383
10.3390/s21051818
10.3390/s21196338
10.1177/1475921720984431
10.2208/jscej.2001.669_309
10.3390/s21227643
10.2749/101686698780488875
10.5169/SEALS-75057
10.1016/j.conbuildmat.2021.122598
10.1680/jstbu.16.00009
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of International Federation for Structural Concrete.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of International Federation for Structural Concrete.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QQ
7SR
8BQ
8FD
F28
FR3
JG9
KR7
DOI 10.1002/suco.202100739
DatabaseName Wiley Online Library Open Access
CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Ceramic Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-7648
EndPage 1369
ExternalDocumentID 10_1002_suco_202100739
SUCO202100739
Genre article
GroupedDBID ..I
.GA
.Y3
05W
0R~
123
1OC
24P
31~
33P
3SF
4.4
50Z
52M
52U
8-0
8-1
8-3
8-4
8-5
930
A03
AABWP
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAUCF
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXNT
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BRXPI
CS3
D-E
D-F
DCZOG
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
FEDTE
G-S
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
ITG
ITH
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
N04
N05
NF~
O66
O9-
P2W
P2X
Q.N
QB0
ROL
RTT
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WXSBR
WYISQ
XG2
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7QQ
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
JG9
KR7
ID FETCH-LOGICAL-c3579-5a0ec7ce3b0d408bc089c853cf89329a4d203b7841a2fb04fe915d862aedc1a83
IEDL.DBID 24P
ISSN 1464-4177
IngestDate Fri Jul 25 12:23:24 EDT 2025
Thu Apr 24 22:53:54 EDT 2025
Tue Jul 01 02:56:04 EDT 2025
Wed Jan 22 16:25:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3579-5a0ec7ce3b0d408bc089c853cf89329a4d203b7841a2fb04fe915d862aedc1a83
Notes Discussion on this paper must be submitted within two months of the print publication. The discussion will then be published in print, along with the authors’ closure, if any, approximately nine months after the print publication.
Correction added on 20 April 2022, after first online publication: CSAL funding statement has been added.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8701-4410
0000-0002-1093-4603
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsuco.202100739
PQID 2681791888
PQPubID 136230
PageCount 17
ParticipantIDs proquest_journals_2681791888
crossref_citationtrail_10_1002_suco_202100739
crossref_primary_10_1002_suco_202100739
wiley_primary_10_1002_suco_202100739_SUCO202100739
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: London
PublicationTitle Structural concrete : journal of the FIB
PublicationYear 2022
Publisher WILEY‐VCH Verlag GmbH & Co. KGaA
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY‐VCH Verlag GmbH & Co. KGaA
– name: Wiley Subscription Services, Inc
References 2021; 21
2021; 20
2022; 251
2012
1971; 68
1961; Heft 138
2021; 226
2020; 225
2021; 282
1950
1998; 236
2004
2020; 146
2003
2022; 21
2002
2016; 169
1978
1983; 101
2021
2020
1970; 67
2018
2005; 6
2017
1984
1983
2016
1998; 2
2013
2020; 256
2001; 2001
1998; 8
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
SIA (e_1_2_10_4_1) 2013
e_1_2_10_40_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_16_1
Lemcherreq Y (e_1_2_10_38_1) 2022; 21
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_32_1
Rehm G (e_1_2_10_11_1) 1961
e_1_2_10_31_1
International Federation for Structural Concrete (e_1_2_10_2_1) 2013
e_1_2_10_30_1
Eligehausen R (e_1_2_10_6_1) 1983
Chen WF (e_1_2_10_35_1) 1970; 67
e_1_2_10_29_1
Alvarez M (e_1_2_10_25_1) 1998
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_26_1
References_xml – volume: 225
  year: 2020
  article-title: Combined application of distributed fibre optical and digital image correlation measurements to structural concrete experiments
  publication-title: Eng Struct
– year: 1983
– volume: 20
  start-page: 3309
  issue: 6
  year: 2021
  end-page: 3326
  article-title: Assessment and visualization of performance indicators of reinforced concrete beams by distributed optical fibre sensing
  publication-title: Struct Health Monit
– volume: 21
  year: 2022
  article-title: Application of distributed fibre optical sensing in reinforced concrete elements subjected to monotonic and cyclic loadings
  publication-title: Sensors
– volume: 67
  start-page: 993
  issue: 12
  year: 1970
  end-page: 5
  article-title: Double punch test for tensile strength of concrete
  publication-title: ACI J
– volume: 8
  start-page: 287
  issue: 4
  year: 1998
  end-page: 298
  article-title: Tension chord model for structural concrete
  publication-title: Struct Eng Int
– volume: 256
  year: 2020
  article-title: Automated crack detection and measurement based on digital image correlation
  publication-title: Construct Build Mater
– year: 2003
– year: 2021
– volume: 169
  start-page: 912
  issue: 12
  year: 2016
  end-page: 924
  article-title: Mechanics solutions for deflection and cracking in concrete
  publication-title: Proc Inst Civ Eng Struct Build
– volume: 21
  start-page: 6338
  issue: 19
  year: 2021
  article-title: Long‐term performance of distributed optical fiber sensors embedded in reinforced concrete beams under sustained deflection and cyclic loading
  publication-title: Sensors
– year: 1950
– volume: 21
  start-page: 7643
  issue: 22
  year: 2021
  article-title: Fundamental studies on the use of distributed fibre optical sensing on concrete and reinforcing bars
  publication-title: Sensors
– year: 2016
– year: 2018
– volume: 2001
  start-page: 309
  issue: 669
  year: 2001
  end-page: 21
  article-title: Experimental study on parameters in localization of concrete subjected to compression
  publication-title: Doboku Gakkai Ronbunshu
– volume: 6
  start-page: 53
  issue: 2
  year: 2005
  end-page: 62
  article-title: Models for flexural cracking in concrete: the state of the art
  publication-title: Struct Concr
– year: 2012
– volume: Heft 138
  start-page: 59
  year: 1961
– volume: 68
  start-page: 244
  issue: 4
  year: 1971
  end-page: 251
  article-title: Cracks formed in concrete around deformed tension bars
  publication-title: J Proc
– volume: 146
  issue: 5
  year: 2020
  article-title: Strength and deformation capacity of tension and flexural RC members containing steel fibers
  publication-title: J Struct Eng
– year: 1984
– volume: 146
  issue: 2
  year: 2020
  article-title: Analytical calculation model for predicting cracking behavior of reinforced concrete ties
  publication-title: J Struct Eng
– year: 2002
– volume: 282
  start-page: 12
  year: 2021
  article-title: Influence of cross section loss on the stress‐strain characteristics of corroded quenched and self‐tempered reinforcing bars
  publication-title: ConBuildMat
– year: 2004
– year: 2020
– volume: 236
  year: 1998
– volume: 101
  start-page: 120
  issue: 6
  year: 1983
  end-page: 5
  article-title: Über Nachweise im Gebrauchszustand
  publication-title: Schweizer Ingenieur und Architekt
– volume: 251
  year: 2022
  article-title: Refined extraction of crack characteristics in large‐scale concrete experiments based on digital image correlation
  publication-title: Eng Struct
– volume: 2
  start-page: 1169
  year: 1998
  end-page: 1182
– year: 2017
– start-page: 262
  year: 1978
– volume: 21
  start-page: 1818
  issue: 5
  year: 2021
  article-title: A review of recent distributed optical fiber sensors applications for civil engineering structural health monitoring
  publication-title: Sensors
– volume: 226
  year: 2021
  article-title: A detailed view on the rebar‐to‐concrete interaction based on refined measurement techniques
  publication-title: Eng Struct
– year: 2013
– ident: e_1_2_10_5_1
  doi: 10.14359/11325
– ident: e_1_2_10_32_1
  doi: 10.1016/j.engstruct.2021.113486
– ident: e_1_2_10_41_1
– start-page: 59
  volume-title: Über die Grundlagen des Verbundes zwischen Stahl und Beton
  year: 1961
  ident: e_1_2_10_11_1
– ident: e_1_2_10_17_1
  doi: 10.1016/j.engstruct.2020.111309
– ident: e_1_2_10_30_1
– ident: e_1_2_10_33_1
– ident: e_1_2_10_13_1
– ident: e_1_2_10_39_1
– volume-title: fib model code for concrete structures 2010
  year: 2013
  ident: e_1_2_10_2_1
– ident: e_1_2_10_10_1
– ident: e_1_2_10_29_1
  doi: 10.1061/(ASCE)ST.1943-541X.0002614
– ident: e_1_2_10_14_1
  doi: 10.1016/j.engstruct.2020.111332
– ident: e_1_2_10_8_1
  doi: 10.1680/stco.2005.6.2.53
– ident: e_1_2_10_9_1
  doi: 10.35789/fib.BULL.0085.Ch20
– volume-title: Einfluss des Verbundverhaltens auf das Verformungsvermögen von Stahlbeton
  year: 1998
  ident: e_1_2_10_25_1
– ident: e_1_2_10_12_1
  doi: 10.1061/(ASCE)ST.1943-541X.0002510
– ident: e_1_2_10_40_1
– ident: e_1_2_10_27_1
– ident: e_1_2_10_31_1
  doi: 10.1016/j.conbuildmat.2020.119383
– ident: e_1_2_10_43_1
– ident: e_1_2_10_20_1
  doi: 10.3390/s21051818
– ident: e_1_2_10_16_1
– ident: e_1_2_10_19_1
  doi: 10.3390/s21196338
– ident: e_1_2_10_24_1
– ident: e_1_2_10_23_1
– ident: e_1_2_10_26_1
– ident: e_1_2_10_21_1
  doi: 10.1177/1475921720984431
– ident: e_1_2_10_34_1
– ident: e_1_2_10_18_1
– volume: 67
  start-page: 993
  issue: 12
  year: 1970
  ident: e_1_2_10_35_1
  article-title: Double punch test for tensile strength of concrete
  publication-title: ACI J
– volume-title: Swisscode SIA 262: concrete structures
  year: 2013
  ident: e_1_2_10_4_1
– ident: e_1_2_10_42_1
  doi: 10.2208/jscej.2001.669_309
– ident: e_1_2_10_37_1
  doi: 10.3390/s21227643
– ident: e_1_2_10_7_1
  doi: 10.2749/101686698780488875
– ident: e_1_2_10_28_1
  doi: 10.5169/SEALS-75057
– ident: e_1_2_10_36_1
  doi: 10.1016/j.conbuildmat.2021.122598
– ident: e_1_2_10_15_1
  doi: 10.1680/jstbu.16.00009
– ident: e_1_2_10_22_1
– ident: e_1_2_10_3_1
– volume: 21
  year: 2022
  ident: e_1_2_10_38_1
  article-title: Application of distributed fibre optical sensing in reinforced concrete elements subjected to monotonic and cyclic loadings
  publication-title: Sensors
– volume-title: Earthquake engineering research center, College of Engineering
  year: 1983
  ident: e_1_2_10_6_1
SSID ssj0021775
ssib035781430
Score 2.302931
Snippet Concrete tensile stresses influence the cracking behaviour and the stiffness of reinforced concrete (RC) members. Most design codes account for this tension...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1353
SubjectTerms compatible stress field method
Compression zone
Concrete
Cross-sectional studies
cross‐sectional analysis
digital image correlation
Digital imaging
distributed fibre optical sensors
effective area of concrete in tension
Euler‐Bernoulli beam theory
Image compression
Mathematical models
Parameters
plane strain assumption
pure bending
Reinforced concrete
Reinforcement
Reinforcing steels
Residual stress
Stiffening
Stiffness
Tensile strength
Tension stiffening
Title Effective reinforcement ratio of RC beams: Validation of modelling assumptions with high‐resolution strain data
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsuco.202100739
https://www.proquest.com/docview/2681791888
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwED5Bu8CA-BWFUnlAYrKaOM4fW1WoEKKAKEXdIttxJmihaXcegWfkSfA5adoOCInRkW1Fd2f7u7PvO4DzLJOBjPBRGBeKcp1GVISxT10VC-FJaawKs5H798HNkN-O_NFKFn_BD1EF3HBl2P0aF7iQeXtJGprPFSbvMddeNm1CHfNrkT2f8ceFRSGVi2v5xUsXzA0t9S72pNw0FjSODmuvz7d-TC2x5yqCtUdQbxd2SuxIOoWy92BDj_dhe4VR8AA-CjZis4WRqbakqMrG_4hVNJlk5KlLpBZv-SV5MRC8qKiE321JHMxNJwZOGx1beyQYpiVIafz9-WUc89JOSW4rSxB8XnoIw971c_eGllUVqDLiiKkvHK1CpT3ppNyJpHKiWJlDW2UGurBY8JQ5nsTrSMEy6fBMx66fGsdH6FS5IvKOoDaejPUxEANulMclkwhKpAhFwOMwlZ4nosAg96ABdCHERJWU4_h_r0lBlswSFHpSCb0BF1X_94Js49eezYVOknLR5QkLIiRbNT59A5jV0x-zJINh96Fqnfxn0ClsMUyIsHGZJtRm07k-MzBlJlvWEltQ71z17wY_ZKvh4Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMCAeIpCAQ9ITFYTx3mxoYqqQFsQtIjNsh1nghaaducn8Bv5JficR9sBITEmcqzoHvZ3Z993CJ2nqQxkBJfCmFCE6SQiIox94qpYCE9KY1VQjdzrB50hu33xy9uEUAuT80NUCTfwDLteg4NDQro5Zw3NZgqq96hrT5tW0RoLaAi-SdlDaVLA5eJagvEiBnNDy71r1gdGmHkoeRwd2lyeb3mfmoPPRQhr96D2NtoqwCO-yrW9g1b0aBdtLlAK7qGPnI7YrGF4oi0rqrIJQGw1jccpfmxhqcVbdomfDQbPWyrBe9sTB4rTscHTRsnWIDHkaTFwGn9_fpnIvDBUnNnWEhjul-6jYft60OqQoq0CUUYcMfGFo1WotCedhDmRVE4UK7Nrq9RgFxoLllDHk3AeKWgqHZbq2PUTE_kInShXRN4Bqo3GI32IsEE3ymOSSkAlUoQiYHGYSM8TUWCge1BHpBQiVwXnOPzfK8_ZkikHofNK6HV0UY1_z9k2fh3ZKHXCC6_LOA0iYFs1QX0dUaunP2bhT8PWffV09J-PztB6Z9Dr8u5N_-4YbVCojrBJmgaqTSczfWIwy1SeWqv8AYQy47k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwMhECZaE6MH4zNWq3Iw8US6y7Ivb6ba-KyNWtMbAZY9aVu77d2f4G_0l8iwj7YHY-KRDZDNzADfDMw3CJ2mqQxkBI_CmFCE6SQiIox94qpYCE9KY1WQjfzQCa577Lbv9-ey-HN-iCrgBivD7tewwEdJ2pyRhmZTBcl71LWXTctoxd74Abcz65YWBVQuruUXL1wwN7TUu2Z7YISZRknj6NDm4nyLx9QMe84jWHsEtTfRRoEd8UWu7C20pAfbaH2OUXAHfeRsxGYLw2NtSVGVjf9hq2g8TPFTC0st3rNz_GogeF5RCb7bkjiQm44NnDY6tvaIIUyLgdL4-_PLOOaFneLMVpbA8Lx0F_XaVy-ta1JUVSDKiCMmvnC0CpX2pJMwJ5LKiWJlDm2VGuhCY8ES6ngSriMFTaXDUh27fmIcH6ET5YrI20O1wXCg9xE24EZ5TFIJoESKUAQsDhPpeSIKDHIP6oiUQuSqoByH_3vjOVky5SB0Xgm9js6q_qOcbOPXno1SJ7xYdBmnQQRkq8anryNq9fTHLPy513qsWgf_GXSCVruXbX5_07k7RGsUciNsiKaBapPxVB8ZxDKRx9YofwBFPOLr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+reinforcement+ratio+of+RC+beams%3A+Validation+of+modelling+assumptions+with+high%E2%80%90resolution+strain+data&rft.jtitle=Structural+concrete+%3A+journal+of+the+FIB&rft.au=Galkovski%2C+Tena&rft.au=Mata%E2%80%90Falc%C3%B3n%2C+Jaime&rft.au=Kaufmann%2C+Walter&rft.date=2022-06-01&rft.issn=1464-4177&rft.eissn=1751-7648&rft.volume=23&rft.issue=3&rft.spage=1353&rft.epage=1369&rft_id=info:doi/10.1002%2Fsuco.202100739&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_suco_202100739
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-4177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-4177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-4177&client=summon