Deep‐Learning‐Based Disease Classification in Patients Undergoing Cine Cardiac MRI

Background Automated approaches may allow for fast, reproducible clinical assessment of cardiovascular diseases from MRI. Purpose To develop an MRI‐based deep learning (DL) disease classification algorithm to distinguish among normal subjects (NORM), patients with dilated cardiomyopathy (DCM), hyper...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 61; no. 4; pp. 1635 - 1647
Main Authors Jacob, Athira J., Chitiboi, Teodora, Schoepf, U. Joseph, Sharma, Puneet, Aldinger, Jonathan, Baker, Charles, Lautenschlager, Carla, Emrich, Tilman, Varga‐Szemes, Akos
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.04.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background Automated approaches may allow for fast, reproducible clinical assessment of cardiovascular diseases from MRI. Purpose To develop an MRI‐based deep learning (DL) disease classification algorithm to distinguish among normal subjects (NORM), patients with dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), and ischemic heart disease (IHD). Study Type Retrospective. Population A total of 1337 subjects (55% female), comprising normal subjects (N = 568), and patients with DCM (N = 151), HCM (N = 177), and IHD (N = 441). Field Strength/Sequence Balanced steady‐state free precession cine sequence at 1.5/3.0 T. Assessment Bi‐ventricular morphological and functional features and global and segmental left ventricular strain features were automatically extracted from short‐ and long‐axis cine images. Variational autoencoder models were trained on the extracted features and compared against consensus disease label provided by two expert readers (13 and 14 years of experience). Adding unlabeled, normal data to the training was explored to increase specificity of NORM class. Statistical Tests Tenfold cross‐validation for model development; mean, standard deviation (SD) for measurements; classification metrics: area under the curve (AUC), confusion matrix, accuracy, specificity, precision, recall; 95% confidence intervals; Mann–Whitney U test for significance. Results AUCs of 0.952 for NORM, 0.881 for DCM, 0.908 for HCM, and 0.856 for IHD and overall accuracy of 0.778 were obtained, with specificity of 0.908 for the NORM class using both SAX and LAX features. Longitudinal strain features slightly improved classification metrics by 0.001 to 0.03 points, except for HCM‐AUC. Differences in accuracy, metrics for NORM class and HCM‐AUC were statistically significant. Cotraining using unlabeled data increased the specificity for the NORM class to 0.961. Data Conclusion Cardiac function features automatically extracted from cine MRI have potential to be used for disease classification, especially for normal‐abnormal classification. Feature analyses showed that strain features were important for disease labeling. Cotraining using unlabeled data may help to increase specificity for normal‐abnormal classification. Level of Evidence 3 Technical Efficacy Stage 1
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1053-1807
1522-2586
1522-2586
DOI:10.1002/jmri.29619