Interfacing Si‐Based Electrodes: Impact of Liquid Electrolyte and Its Components

As the demand for mobile energy storage devices has steadily increased during the past decades due to the rising popularity of portable electronics as well as the continued implementation of electromobility, energy density has become a crucial metric in the development of modern batteries. It was re...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials interfaces Vol. 9; no. 8
Main Authors Wölke, Christian, Sadeghi, Bahareh A., Eshetu, Gebrekidan G., Figgemeier, Egbert, Winter, Martin, Cekic‐Laskovic, Isidora
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As the demand for mobile energy storage devices has steadily increased during the past decades due to the rising popularity of portable electronics as well as the continued implementation of electromobility, energy density has become a crucial metric in the development of modern batteries. It was realized early on that the successful utilization of silicon as negative electrode material in lithium‐ion batteries would be a quantum leap in improving achievable energy densities due to the roughly ten‐fold increase in specific capacity compared to the state‐of‐the‐art graphite material. However, being an alloying type material rather than an intercalation/insertion type, silicon poses numerous obstacles that need to be overcome for its successful implementation as a negative electrode material with the most prominent one being its extreme volume changes on (de‐)lithiation. While, as of today, a plethora of different types of Si‐based electrodes have been reported, a universally common feature is the interface between Si‐based electrode and electrolyte. This review focuses on the knowledge gained thus far on the impact of different liquid electrolyte components/formulations on the interfaces and interphases encountered at Si‐based electrodes. Silicon‐based electrodes are in the focus of numerous research endeavors aiming at increasing the energy density of lithium‐ion batteries. Overcoming the imposed challenges around silicon as negative electrode, addresses tailoring of electrolyte formulation(s). This work highlights wide variety of different compounds used as electrolyte solvents/co‐solvents, conducting salts and additives and summarizes their impact on the interphases formed on silicon‐based electrodes.
AbstractList Abstract As the demand for mobile energy storage devices has steadily increased during the past decades due to the rising popularity of portable electronics as well as the continued implementation of electromobility, energy density has become a crucial metric in the development of modern batteries. It was realized early on that the successful utilization of silicon as negative electrode material in lithium‐ion batteries would be a quantum leap in improving achievable energy densities due to the roughly ten‐fold increase in specific capacity compared to the state‐of‐the‐art graphite material. However, being an alloying type material rather than an intercalation/insertion type, silicon poses numerous obstacles that need to be overcome for its successful implementation as a negative electrode material with the most prominent one being its extreme volume changes on (de‐)lithiation. While, as of today, a plethora of different types of Si‐based electrodes have been reported, a universally common feature is the interface between Si‐based electrode and electrolyte. This review focuses on the knowledge gained thus far on the impact of different liquid electrolyte components/formulations on the interfaces and interphases encountered at Si‐based electrodes.
As the demand for mobile energy storage devices has steadily increased during the past decades due to the rising popularity of portable electronics as well as the continued implementation of electromobility, energy density has become a crucial metric in the development of modern batteries. It was realized early on that the successful utilization of silicon as negative electrode material in lithium‐ion batteries would be a quantum leap in improving achievable energy densities due to the roughly ten‐fold increase in specific capacity compared to the state‐of‐the‐art graphite material. However, being an alloying type material rather than an intercalation/insertion type, silicon poses numerous obstacles that need to be overcome for its successful implementation as a negative electrode material with the most prominent one being its extreme volume changes on (de‐)lithiation. While, as of today, a plethora of different types of Si‐based electrodes have been reported, a universally common feature is the interface between Si‐based electrode and electrolyte. This review focuses on the knowledge gained thus far on the impact of different liquid electrolyte components/formulations on the interfaces and interphases encountered at Si‐based electrodes.
As the demand for mobile energy storage devices has steadily increased during the past decades due to the rising popularity of portable electronics as well as the continued implementation of electromobility, energy density has become a crucial metric in the development of modern batteries. It was realized early on that the successful utilization of silicon as negative electrode material in lithium‐ion batteries would be a quantum leap in improving achievable energy densities due to the roughly ten‐fold increase in specific capacity compared to the state‐of‐the‐art graphite material. However, being an alloying type material rather than an intercalation/insertion type, silicon poses numerous obstacles that need to be overcome for its successful implementation as a negative electrode material with the most prominent one being its extreme volume changes on (de‐)lithiation. While, as of today, a plethora of different types of Si‐based electrodes have been reported, a universally common feature is the interface between Si‐based electrode and electrolyte. This review focuses on the knowledge gained thus far on the impact of different liquid electrolyte components/formulations on the interfaces and interphases encountered at Si‐based electrodes. Silicon‐based electrodes are in the focus of numerous research endeavors aiming at increasing the energy density of lithium‐ion batteries. Overcoming the imposed challenges around silicon as negative electrode, addresses tailoring of electrolyte formulation(s). This work highlights wide variety of different compounds used as electrolyte solvents/co‐solvents, conducting salts and additives and summarizes their impact on the interphases formed on silicon‐based electrodes.
Author Sadeghi, Bahareh A.
Cekic‐Laskovic, Isidora
Figgemeier, Egbert
Wölke, Christian
Eshetu, Gebrekidan G.
Winter, Martin
Author_xml – sequence: 1
  givenname: Christian
  surname: Wölke
  fullname: Wölke, Christian
  organization: Helmholtz‐Institute Münster (IEK‐12)
– sequence: 2
  givenname: Bahareh A.
  surname: Sadeghi
  fullname: Sadeghi, Bahareh A.
  organization: Helmholtz‐Institute Münster (IEK‐12)
– sequence: 3
  givenname: Gebrekidan G.
  surname: Eshetu
  fullname: Eshetu, Gebrekidan G.
  organization: RWTH Aachen University
– sequence: 4
  givenname: Egbert
  surname: Figgemeier
  fullname: Figgemeier, Egbert
  organization: RWTH Aachen University
– sequence: 5
  givenname: Martin
  surname: Winter
  fullname: Winter, Martin
  organization: MEET Battery Research Center
– sequence: 6
  givenname: Isidora
  orcidid: 0000-0003-1116-1574
  surname: Cekic‐Laskovic
  fullname: Cekic‐Laskovic, Isidora
  email: i.cekic-laskovic@fz-juelich.de
  organization: Helmholtz‐Institute Münster (IEK‐12)
BookMark eNqFkE1Lw0AQhhepYK29el7wnDqTbZKNt1qrBiqCH-dlux-Skq_upkhu_gR_o7_ElEr15mkG5nln3nlPyaCqK0PIOcIEAcJLqct8EkKIgDzlR2QYYhoHCYtg8Kc_IWPv1wCAGGLI2ZA8ZVVrnJUqr97oc_718XktvdF0URjVulobf0WzspGqpbWly3yzzQ_DomsNlZWmWevpvC6b3lLV-jNybGXhzfinjsjr7eJlfh8sH--y-WwZKBYlPNAIaSzBTlcWMDKaAVcaV9YkMrUssjwybGp5_5NiieYqTkHJ3nmUol1JBmxELvZ7G1dvtsa3Yl1vXdWfFGHMOMY4jeOemuwp5WrvnbGicXkpXScQxC46sYtOHKLrBele8J4XpvuHFrObh-xX-w2_LHRp
CitedBy_id crossref_primary_10_1002_aenm_202303568
crossref_primary_10_1002_advs_202310062
crossref_primary_10_1002_aenm_202402152
crossref_primary_10_1021_acsaem_3c02551
crossref_primary_10_1002_aenm_202201859
crossref_primary_10_1039_D3IM00115F
crossref_primary_10_1002_batt_202400012
crossref_primary_10_1002_advs_202403530
crossref_primary_10_1016_j_cej_2022_138785
crossref_primary_10_1021_acsnano_4c00998
crossref_primary_10_1021_acsami_2c06328
crossref_primary_10_1002_smll_202206092
crossref_primary_10_1021_acs_chemrev_2c00214
Cites_doi 10.1039/c2cc31712e
10.1002/adma.202004577
10.1007/s10800-015-0856-6
10.1016/j.mseb.2016.04.016
10.1039/C8RA07988A
10.1021/acs.jpcc.6b07570
10.1021/la300306v
10.1038/s41565-021-00947-8
10.1149/2.0681714jes
10.1039/C6RA06555D
10.1016/j.jallcom.2018.09.249
10.1021/am500363t
10.1002/9783527611676.ch17
10.1149/2.1011603jes
10.1038/s41598-017-06555-8
10.1016/j.ensm.2016.08.002
10.1016/j.mattod.2019.07.002
10.1149/2.086401jes
10.1002/batt.202100106
10.1149/1.3076196
10.1016/j.electacta.2019.135179
10.1016/j.nanoen.2016.11.013
10.1039/D0SE00175A
10.1016/S0013-4686(99)00191-7
10.1016/j.progsolidstchem.2014.04.013
10.1149/2.1441707jes
10.1021/acsami.8b22221
10.1038/s41524-017-0009-z
10.1007/s41061-017-0125-8
10.1016/j.electacta.2016.12.071
10.1149/2.0011507jes
10.1016/j.xcrp.2021.100327
10.1021/acs.jpcc.5b06817
10.1039/C8NR05354E
10.1016/S0378-7753(00)00585-1
10.1149/2.0391504jes
10.1016/j.electacta.2020.136356
10.1016/j.jpowsour.2018.02.013
10.1021/acs.jpcc.5b03591
10.1021/acsenergylett.9b02082
10.1021/acs.chemmater.5b00339
10.1002/admi.202000277
10.1016/j.synthmet.2016.12.005
10.1016/j.nanoen.2018.11.007
10.1016/j.elecom.2013.05.001
10.1149/2.1341810jes
10.1016/j.jpowsour.2015.10.089
10.1016/j.jpowsour.2009.11.142
10.1021/acs.chemmater.9b03173
10.1021/ja403082s
10.1038/s41598-019-49568-1
10.1016/j.cej.2020.127782
10.1039/C6NR03575B
10.1021/acs.nanolett.7b04688
10.1149/2.0301811jes
10.1021/acsenergylett.0c02629
10.1016/j.electacta.2011.07.136
10.1021/jacs.5b10333
10.1016/j.electacta.2017.06.128
10.1021/acsami.6b02650
10.1149/2.060309jes
10.1149/2.0981602jes
10.1002/adfm.201906548
10.1002/cssc.201900209
10.1021/acsami.5b04845
10.1021/acs.chemmater.5b01627
10.1149/1.2940310
10.1002/aenm.201803170
10.1039/C9NR05748J
10.1021/acsami.9b07270
10.1021/acs.chemmater.0c02954
10.1002/anie.201901381
10.1039/C4CP01948B
10.1149/1.3589300
10.1524/zpch.2009.6086
10.1007/s11581-019-03396-5
10.1016/j.jpowsour.2015.08.098
10.1016/j.jpowsour.2017.07.046
10.1038/s41560-018-0107-2
10.1016/j.jpowsour.2006.05.049
10.1149/2.0581503jes
10.1016/0378-7753(93)80183-P
10.1016/j.jpowsour.2015.09.112
10.1021/acsaem.9b01094
10.1021/jacs.7b06834
10.1016/j.jpowsour.2014.09.086
10.1039/D0TA05827K
10.1016/j.ensm.2018.11.001
10.1149/05026.0365ecst
10.1007/s007060170110
10.1002/celc.202000713
10.1038/s41560-020-0601-1
10.1149/1945-7111/abec66
10.1021/jacs.8b03408
10.1021/acsenergylett.1c00514
10.1002/aenm.201900784
10.1021/acsami.8b07683
10.1039/C9TA00126C
10.1016/j.jpowsour.2012.08.066
10.1149/2.0731412jes
10.1021/la203712s
10.1016/j.coche.2016.08.003
10.1016/j.electacta.2017.05.062
10.1149/2.092401jes
10.1016/j.ssi.2012.03.042
10.5796/electrochemistry.83.837
10.1016/j.cplett.2017.07.009
10.1016/j.electacta.2009.03.046
10.1021/acscentsci.7b00288
10.1039/C5CP03672K
10.1016/j.electacta.2014.05.136
10.1142/S1793604720510418
10.1002/aenm.201900747
10.1021/acs.nanolett.8b00298
10.1016/j.jpowsour.2007.07.058
10.1021/acsami.0c19347
10.1016/j.matt.2019.09.020
10.1016/j.jallcom.2016.11.248
10.1149/2.029209jes
10.1021/acs.jpcc.7b04132
10.1016/S0167-2738(96)00389-X
10.1016/j.progsolidstchem.2014.04.003
10.1016/j.jpowsour.2007.06.149
10.1007/s11581-018-2682-4
10.1149/2.0361512jes
10.1021/acsaem.0c02946
10.1007/s11581-017-2143-5
10.1149/2.0951608jes
10.1016/j.elecom.2016.03.005
10.1016/j.ensm.2020.11.028
10.1002/smll.201702737
10.1039/c3cc49269a
10.1016/S1452-3981(23)11210-7
10.1149/2.095205jes
10.1016/j.jpowsour.2017.05.044
10.1021/acs.chemmater.5b04408
10.1002/aenm.202000089
10.1149/1.2338771
10.1002/cssc.201601636
10.1038/s41467-021-21106-6
10.1021/acs.chemmater.8b03764
10.1149/2.0121514jes
10.1002/cssc.201300770
10.1021/cr500003w
10.1016/j.jpowsour.2012.01.095
10.1021/jp502261t
10.1039/C0EE00281J
10.1149/2.1121712jes
10.1002/batt.201800123
10.1039/c3cp44438d
10.1002/slct.201600119
10.1021/cm2034195
10.1007/s10008-013-2005-7
10.1149/2.076205jes
10.1002/adma.201806620
10.1021/jp404155y
10.1021/acs.jpcc.5b01228
10.1149/2.0621810jes
10.1007/s10800-020-01484-3
10.1016/j.jpowsour.2017.05.093
10.1149/2.1211609jes
10.1021/acs.chemrev.8b00422
10.1021/acssuschemeng.0c01733
10.1021/acsami.9b18252
10.1016/j.jelechem.2018.12.026
10.1039/C7CP05405J
10.1021/cr030203g
10.1021/acsami.5b01853
10.1016/j.elecom.2013.04.010
ContentType Journal Article
Copyright 2022 The Authors. Advanced Materials Interfaces published by Wiley‐VCH GmbH
2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Advanced Materials Interfaces published by Wiley‐VCH GmbH
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/admi.202101898
DatabaseName Wiley Online Library
Wiley Free Content
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID 10_1002_admi_202101898
ADMI202101898
Genre reviewArticle
GrantInformation_xml – fundername: European Union's Horizon 2020
  funderid: 875548
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
DPXWK
EBS
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
M~E
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WIN
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EJD
GROUPED_DOAJ
HCIFZ
KB.
M7S
PDBOC
PTHSS
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3578-d1096a0f4bf015ed308cd1bfe7a9f35f85e34f8202c37d8c690ca001591fba303
IEDL.DBID 24P
ISSN 2196-7350
IngestDate Thu Oct 10 22:44:23 EDT 2024
Thu Sep 12 17:39:32 EDT 2024
Sat Aug 24 00:56:45 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3578-d1096a0f4bf015ed308cd1bfe7a9f35f85e34f8202c37d8c690ca001591fba303
Notes The copyright line for this article was changed on 10 January 2022 after original online publication.
ORCID 0000-0003-1116-1574
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202101898
PQID 2638161466
PQPubID 2034582
PageCount 21
ParticipantIDs proquest_journals_2638161466
crossref_primary_10_1002_admi_202101898
wiley_primary_10_1002_admi_202101898_ADMI202101898
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2018; 165
2021; 168
2019; 11
2019; 12
1999; 45
2020; 13
2016; 303
2011; 56
2020; 10
2016; 301
2013; 8
2014; 137
2001; 132
1998; 17
2018; 3
2007; 172
2019; 20
2020; 330
2015; 83
2013; 50
2007; 174
2013; 117
2014; 16
2019; 29
2018; 30
2019; 834
2012; 28
2010; 195
2017; 164
2006; 161
2017; 684
2012; 24
2019; 7
2019; 9
2019; 4
2021; 421
2019; 31
2019; 2
2019; 1
1993; 44
1998
2013; 222
1996; 90
2020; 32
2011; 4
2017; 375
2021; 51
2016; 13
2016; 163
2017; 139
2014; 42
2018; 24
2016; 6
2018; 18
2016; 1
2018; 118
2020; 26
2009; 223
2015; 119
2016; 213
2012; 48
2016; 28
2018; 10
2016; 8
2018; 14
2017; 6
2011; 158
2017; 7
2001; 94
2017; 3
2019; 55
2019; 58
2009; 156
2013; 161
2013; 160
2012; 206
2017; 359
2020; 8
2021; 35
2020; 7
2015; 45
2017; 31
2020; 5
2020; 4
2013; 15
2009; 54
2013; 17
2021; 33
2015; 299
2014; 161
2017; 362
2017; 121
2008; 155
2017; 245
2014; 7
2012; 215
2014; 50
2014; 6
2017; 247
2015; 162
2014; 118
2021; 6
2015; 17
2021; 4
2004; 104
2018; 140
2018; 381
2021; 2
2006; 9
2015; 10
2017; 23
2020; 349
2017; 695
2015; 7
2014; 114
2016; 120
2015; 273
2021; 13
2021; 16
2015; 27
2021; 12
2013; 33
2017; 10
2019; 773
2013; 135
2017; 19
2016; 138
2012; 159
2017; 223
2017; 224
2016; 66
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_161_1
e_1_2_7_26_1
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_146_1
e_1_2_7_169_1
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_150_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_135_1
e_1_2_7_158_1
e_1_2_7_139_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_162_1
e_1_2_7_143_1
e_1_2_7_29_1
e_1_2_7_166_1
e_1_2_7_147_1
e_1_2_7_117_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_151_1
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_136_1
e_1_2_7_159_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_170_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_140_1
e_1_2_7_163_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_167_1
e_1_2_7_148_1
Winter M. (e_1_2_7_7_1) 1998; 17
e_1_2_7_118_1
e_1_2_7_114_1
Domi Y. (e_1_2_7_49_1) 2015; 10
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_171_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_39_1
Xu S.‐D. (e_1_2_7_126_1) 2013; 8
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_137_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_122_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_160_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_27_1
e_1_2_7_164_1
e_1_2_7_145_1
e_1_2_7_168_1
e_1_2_7_149_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_38_1
e_1_2_7_153_1
e_1_2_7_134_1
e_1_2_7_157_1
e_1_2_7_138_1
References_xml – volume: 162
  start-page: A406
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 16
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 223
  start-page: 73
  year: 2017
  publication-title: Synth. Met.
– volume: 33
  start-page: 72
  year: 2013
  publication-title: Electrochem. Commun.
– volume: 160
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 50
  start-page: 3081
  year: 2014
  publication-title: Chem. Commun.
– volume: 35
  start-page: 550
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 2
  year: 2021
  publication-title: Cell Rep. Phys. Sci.
– volume: 121
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 213
  start-page: 2
  year: 2016
  publication-title: Mater. Sci. Eng., B
– volume: 14
  year: 2018
  publication-title: Small
– volume: 32
  start-page: 173
  year: 2020
  publication-title: Chem. Mater.
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 158
  start-page: A798
  year: 2011
  publication-title: J. Electrochem. Soc.
– volume: 222
  start-page: 140
  year: 2013
  publication-title: J. Power Sources
– volume: 45
  start-page: 31
  year: 1999
  publication-title: Electrochim. Acta
– volume: 159
  start-page: A657
  year: 2012
  publication-title: J. Electrochem. Soc.
– volume: 6
  start-page: 1684
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 161
  year: 2014
  publication-title: J. Electrochem. Soc.
– volume: 349
  year: 2020
  publication-title: Electrochim. Acta
– volume: 362
  start-page: 349
  year: 2017
  publication-title: J. Power Sources
– volume: 32
  start-page: 8956
  year: 2020
  publication-title: Chem. Mater.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 9854
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 26
  year: 2017
  publication-title: Energy Storage Mater.
– volume: 33
  start-page: 31
  year: 2013
  publication-title: Electrochem. Commun.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 273
  start-page: 954
  year: 2015
  publication-title: J. Power Sources
– volume: 26
  start-page: 2247
  year: 2020
  publication-title: Ionics
– volume: 30
  start-page: 8291
  year: 2018
  publication-title: Chem. Mater.
– volume: 6
  start-page: 6672
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 156
  start-page: A294
  year: 2009
  publication-title: J. Electrochem. Soc.
– volume: 8
  year: 2020
  publication-title: ACS Sustainable Chem. Eng.
– volume: 7
  year: 2020
  publication-title: Adv. Mater. Interfaces
– volume: 773
  start-page: 105
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 1
  start-page: 1232
  year: 2019
  publication-title: Matter
– volume: 162
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 119
  start-page: 7060
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 195
  start-page: 3709
  year: 2010
  publication-title: J. Power Sources
– volume: 3
  start-page: 1063
  year: 2017
  publication-title: ACS Cent. Sci.
– volume: 303
  start-page: 150
  year: 2016
  publication-title: J. Power Sources
– volume: 20
  start-page: 388
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 174
  start-page: 538
  year: 2007
  publication-title: J. Power Sources
– volume: 163
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 2
  start-page: 213
  year: 2019
  publication-title: Batteries Supercaps
– volume: 162
  start-page: A603
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 44
  start-page: 413
  year: 1993
  publication-title: J. Power Sources
– volume: 4
  start-page: 1611
  year: 2021
  publication-title: Batteries Supercaps
– volume: 4
  start-page: 2770
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 164
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 24
  start-page: 3691
  year: 2018
  publication-title: Ionics
– volume: 17
  start-page: 1393
  year: 2013
  publication-title: J. Solid State Electrochem.
– volume: 27
  start-page: 2591
  year: 2015
  publication-title: Chem. Mater.
– volume: 168
  year: 2021
  publication-title: J. Electrochem. Soc.
– volume: 137
  start-page: 1
  year: 2014
  publication-title: Electrochim. Acta
– volume: 17
  start-page: 208
  year: 1998
  publication-title: Prog. Batteries Battery Mater.
– start-page: 383
  year: 1998
– volume: 161
  start-page: 1254
  year: 2006
  publication-title: J. Power Sources
– volume: 8
  year: 2016
  publication-title: Nanoscale
– volume: 119
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 48
  start-page: 7268
  year: 2012
  publication-title: Chem. Commun.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 118
  year: 2018
  publication-title: Chem. Rev.
– volume: 104
  start-page: 4303
  year: 2004
  publication-title: Chem. Rev.
– volume: 12
  start-page: 838
  year: 2021
  publication-title: Nat. Commun.
– volume: 42
  start-page: 202
  year: 2014
  publication-title: Prog. Solid State Chem.
– volume: 16
  start-page: 1113
  year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 27
  start-page: 5531
  year: 2015
  publication-title: Chem. Mater.
– volume: 1
  start-page: 572
  year: 2016
  publication-title: ChemistrySelect
– volume: 28
  start-page: 385
  year: 2016
  publication-title: Chem. Mater.
– volume: 10
  start-page: 804
  year: 2017
  publication-title: ChemSusChem
– volume: 55
  start-page: 477
  year: 2019
  publication-title: Nano Energy
– volume: 330
  year: 2020
  publication-title: Electrochim. Acta
– volume: 56
  start-page: 8997
  year: 2011
  publication-title: Electrochim. Acta
– volume: 13
  year: 2020
  publication-title: Funct. Mater. Lett.
– volume: 421
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 549
  year: 2014
  publication-title: ChemSusChem
– volume: 159
  start-page: A642
  year: 2012
  publication-title: J. Electrochem. Soc.
– volume: 163
  start-page: A557
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 42
  start-page: 65
  year: 2014
  publication-title: Prog. Solid State Chem.
– volume: 51
  start-page: 143
  year: 2021
  publication-title: J. Appl. Electrochem.
– volume: 163
  start-page: A345
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 117
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 32
  start-page: 131
  year: 2020
  publication-title: Mater. Today
– volume: 3
  start-page: 7
  year: 2017
  publication-title: npj Comput. Mater.
– volume: 54
  start-page: 4506
  year: 2009
  publication-title: Electrochim. Acta
– volume: 695
  start-page: 3249
  year: 2017
  publication-title: J. Alloys Compd.
– volume: 45
  start-page: 873
  year: 2015
  publication-title: J. Appl. Electrochem.
– volume: 206
  start-page: 245
  year: 2012
  publication-title: J. Power Sources
– volume: 28
  start-page: 6175
  year: 2012
  publication-title: Langmuir
– volume: 161
  start-page: A176
  year: 2014
  publication-title: J. Electrochem. Soc.
– volume: 94
  start-page: 189
  year: 2001
  publication-title: J. Power Sources
– volume: 165
  year: 2018
  publication-title: J. Electrochem. Soc.
– volume: 83
  start-page: 837
  year: 2015
  publication-title: Electrochemistry
– volume: 6
  start-page: 1811
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 2
  start-page: 6513
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 90
  start-page: 281
  year: 1996
  publication-title: Solid State Ionics
– volume: 3
  start-page: 267
  year: 2018
  publication-title: Nat. Energy
– volume: 23
  start-page: 3281
  year: 2017
  publication-title: Ionics
– volume: 301
  start-page: 105
  year: 2016
  publication-title: J. Power Sources
– volume: 17
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 4
  start-page: 2419
  year: 2021
  publication-title: ACS Appl. Energy Mater.
– volume: 247
  start-page: 600
  year: 2017
  publication-title: Electrochim. Acta
– volume: 381
  start-page: 164
  year: 2018
  publication-title: J. Power Sources
– volume: 4
  start-page: 5387
  year: 2020
  publication-title: Sustainable Energy Fuels
– volume: 4
  start-page: 56
  year: 2011
  publication-title: Energy Env. Sci.
– volume: 299
  start-page: 434
  year: 2015
  publication-title: J. Power Sources
– volume: 135
  start-page: 9829
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 8700
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 834
  start-page: 1
  year: 2019
  publication-title: J. Electroanal. Chem.
– volume: 31
  start-page: 113
  year: 2017
  publication-title: Nano Energy
– volume: 132
  start-page: 473
  year: 2001
  publication-title: Monatsh. Chem.
– volume: 215
  start-page: 36
  year: 2012
  publication-title: Solid State Ionics
– volume: 10
  start-page: 9678
  year: 2015
  publication-title: Int. J. Electrochem. Sci.
– volume: 50
  start-page: 365
  year: 2013
  publication-title: ECS Trans.
– volume: 161
  start-page: A213
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 15
  start-page: 7777
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 24
  start-page: 1107
  year: 2012
  publication-title: Chem. Mater.
– volume: 12
  start-page: 2515
  year: 2019
  publication-title: ChemSusChem
– volume: 66
  start-page: 71
  year: 2016
  publication-title: Electrochem. Commun.
– volume: 9
  year: 2019
  publication-title: Sci. Rep.
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 245
  start-page: 99
  year: 2017
  publication-title: Electrochim. Acta
– volume: 224
  start-page: 186
  year: 2017
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 386
  year: 2020
  publication-title: Nat. Energy
– volume: 13
  start-page: 24
  year: 2016
  publication-title: Curr. Opin. Chem. Eng.
– volume: 19
  year: 2017
  publication-title: Phys. Chem. Chem. Phys.
– volume: 375
  start-page: 37
  year: 2017
  publication-title: Top. Curr. Chem.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 172
  start-page: 404
  year: 2007
  publication-title: J. Power Sources
– volume: 120
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 28
  start-page: 965
  year: 2012
  publication-title: Langmuir
– volume: 18
  start-page: 2105
  year: 2018
  publication-title: Nano Lett.
– volume: 155
  start-page: A583
  year: 2008
  publication-title: J. Electrochem. Soc.
– volume: 138
  start-page: 726
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 435
  year: 2019
  publication-title: RSC Adv.
– volume: 223
  start-page: 1395
  year: 2009
  publication-title: Z. Für Phys. Chem.
– volume: 7
  start-page: 3743
  year: 2020
  publication-title: ChemElectroChem
– volume: 13
  start-page: 2662
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 118
  start-page: 9395
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 159
  year: 2012
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 6326
  year: 2017
  publication-title: Sci. Rep.
– volume: 359
  start-page: 173
  year: 2017
  publication-title: J. Power Sources
– volume: 8
  start-page: 19
  year: 2013
  publication-title: Int. J. Electrochem. Sci.
– volume: 684
  start-page: 383
  year: 2017
  publication-title: Chem. Phys. Lett.
– volume: 359
  start-page: 601
  year: 2017
  publication-title: J. Power Sources
– volume: 9
  start-page: A512
  year: 2006
  publication-title: Electrochem. Solid‐State Lett.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  start-page: 1145
  year: 2018
  publication-title: Nano Lett.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– ident: e_1_2_7_38_1
  doi: 10.1039/c2cc31712e
– ident: e_1_2_7_11_1
  doi: 10.1002/adma.202004577
– ident: e_1_2_7_145_1
  doi: 10.1007/s10800-015-0856-6
– ident: e_1_2_7_9_1
  doi: 10.1016/j.mseb.2016.04.016
– ident: e_1_2_7_101_1
  doi: 10.1039/C8RA07988A
– ident: e_1_2_7_134_1
  doi: 10.1021/acs.jpcc.6b07570
– ident: e_1_2_7_58_1
  doi: 10.1021/la300306v
– ident: e_1_2_7_21_1
  doi: 10.1038/s41565-021-00947-8
– ident: e_1_2_7_118_1
  doi: 10.1149/2.0681714jes
– ident: e_1_2_7_147_1
  doi: 10.1039/C6RA06555D
– ident: e_1_2_7_61_1
  doi: 10.1016/j.jallcom.2018.09.249
– ident: e_1_2_7_158_1
  doi: 10.1021/am500363t
– ident: e_1_2_7_8_1
  doi: 10.1002/9783527611676.ch17
– ident: e_1_2_7_56_1
  doi: 10.1149/2.1011603jes
– ident: e_1_2_7_94_1
  doi: 10.1038/s41598-017-06555-8
– ident: e_1_2_7_103_1
  doi: 10.1016/j.ensm.2016.08.002
– ident: e_1_2_7_19_1
  doi: 10.1016/j.mattod.2019.07.002
– ident: e_1_2_7_142_1
  doi: 10.1149/2.086401jes
– ident: e_1_2_7_30_1
  doi: 10.1002/batt.202100106
– volume: 8
  start-page: 19
  year: 2013
  ident: e_1_2_7_126_1
  publication-title: Int. J. Electrochem. Sci.
  contributor:
    fullname: Xu S.‐D.
– ident: e_1_2_7_72_1
  doi: 10.1149/1.3076196
– ident: e_1_2_7_131_1
  doi: 10.1016/j.electacta.2019.135179
– ident: e_1_2_7_10_1
  doi: 10.1016/j.nanoen.2016.11.013
– ident: e_1_2_7_5_1
  doi: 10.1039/D0SE00175A
– ident: e_1_2_7_6_1
  doi: 10.1016/S0013-4686(99)00191-7
– ident: e_1_2_7_64_1
  doi: 10.1016/j.progsolidstchem.2014.04.013
– ident: e_1_2_7_33_1
  doi: 10.1149/2.1441707jes
– ident: e_1_2_7_108_1
  doi: 10.1021/acsami.8b22221
– ident: e_1_2_7_24_1
  doi: 10.1038/s41524-017-0009-z
– ident: e_1_2_7_34_1
  doi: 10.1007/s41061-017-0125-8
– ident: e_1_2_7_104_1
  doi: 10.1016/j.electacta.2016.12.071
– ident: e_1_2_7_17_1
  doi: 10.1149/2.0011507jes
– ident: e_1_2_7_96_1
  doi: 10.1016/j.xcrp.2021.100327
– ident: e_1_2_7_167_1
  doi: 10.1021/acs.jpcc.5b06817
– ident: e_1_2_7_67_1
  doi: 10.1039/C8NR05354E
– ident: e_1_2_7_18_1
  doi: 10.1016/S0378-7753(00)00585-1
– ident: e_1_2_7_22_1
  doi: 10.1149/2.0391504jes
– ident: e_1_2_7_37_1
  doi: 10.1016/j.electacta.2020.136356
– ident: e_1_2_7_46_1
  doi: 10.1016/j.jpowsour.2018.02.013
– ident: e_1_2_7_90_1
  doi: 10.1021/acs.jpcc.5b03591
– ident: e_1_2_7_160_1
  doi: 10.1021/acsenergylett.9b02082
– ident: e_1_2_7_86_1
  doi: 10.1021/acs.chemmater.5b00339
– ident: e_1_2_7_146_1
  doi: 10.1002/admi.202000277
– ident: e_1_2_7_76_1
  doi: 10.1016/j.synthmet.2016.12.005
– ident: e_1_2_7_162_1
  doi: 10.1016/j.nanoen.2018.11.007
– ident: e_1_2_7_169_1
  doi: 10.1016/j.elecom.2013.05.001
– ident: e_1_2_7_20_1
  doi: 10.1149/2.1341810jes
– ident: e_1_2_7_45_1
  doi: 10.1016/j.jpowsour.2015.10.089
– ident: e_1_2_7_137_1
  doi: 10.1016/j.jpowsour.2009.11.142
– ident: e_1_2_7_136_1
  doi: 10.1021/acs.chemmater.9b03173
– ident: e_1_2_7_68_1
  doi: 10.1021/ja403082s
– ident: e_1_2_7_100_1
  doi: 10.1038/s41598-019-49568-1
– ident: e_1_2_7_62_1
  doi: 10.1016/j.cej.2020.127782
– ident: e_1_2_7_159_1
  doi: 10.1039/C6NR03575B
– ident: e_1_2_7_156_1
  doi: 10.1021/acs.nanolett.7b04688
– ident: e_1_2_7_112_1
  doi: 10.1149/2.0301811jes
– ident: e_1_2_7_53_1
  doi: 10.1021/acsenergylett.0c02629
– ident: e_1_2_7_78_1
  doi: 10.1016/j.electacta.2011.07.136
– ident: e_1_2_7_155_1
  doi: 10.1021/jacs.5b10333
– ident: e_1_2_7_129_1
  doi: 10.1016/j.electacta.2017.06.128
– ident: e_1_2_7_75_1
  doi: 10.1021/acsami.6b02650
– ident: e_1_2_7_141_1
  doi: 10.1149/2.060309jes
– ident: e_1_2_7_69_1
  doi: 10.1149/2.0981602jes
– ident: e_1_2_7_133_1
  doi: 10.1002/adfm.201906548
– ident: e_1_2_7_28_1
  doi: 10.1002/cssc.201900209
– ident: e_1_2_7_164_1
  doi: 10.1021/acsami.5b04845
– ident: e_1_2_7_117_1
  doi: 10.1021/acs.chemmater.5b01627
– ident: e_1_2_7_148_1
  doi: 10.1149/1.2940310
– ident: e_1_2_7_4_1
  doi: 10.1002/aenm.201803170
– ident: e_1_2_7_82_1
  doi: 10.1039/C9NR05748J
– ident: e_1_2_7_92_1
  doi: 10.1021/acsami.9b07270
– ident: e_1_2_7_55_1
  doi: 10.1021/acs.chemmater.0c02954
– ident: e_1_2_7_65_1
  doi: 10.1002/anie.201901381
– ident: e_1_2_7_88_1
  doi: 10.1039/C4CP01948B
– ident: e_1_2_7_42_1
  doi: 10.1149/1.3589300
– ident: e_1_2_7_16_1
  doi: 10.1524/zpch.2009.6086
– ident: e_1_2_7_97_1
  doi: 10.1007/s11581-019-03396-5
– ident: e_1_2_7_59_1
  doi: 10.1016/j.jpowsour.2015.08.098
– ident: e_1_2_7_52_1
  doi: 10.1016/j.jpowsour.2017.07.046
– ident: e_1_2_7_12_1
  doi: 10.1038/s41560-018-0107-2
– ident: e_1_2_7_109_1
  doi: 10.1016/j.jpowsour.2006.05.049
– ident: e_1_2_7_123_1
  doi: 10.1149/2.0581503jes
– ident: e_1_2_7_79_1
  doi: 10.1016/0378-7753(93)80183-P
– ident: e_1_2_7_74_1
  doi: 10.1016/j.jpowsour.2015.09.112
– ident: e_1_2_7_98_1
  doi: 10.1021/acsaem.9b01094
– ident: e_1_2_7_91_1
  doi: 10.1021/jacs.7b06834
– ident: e_1_2_7_60_1
  doi: 10.1016/j.jpowsour.2014.09.086
– ident: e_1_2_7_102_1
  doi: 10.1039/D0TA05827K
– ident: e_1_2_7_111_1
  doi: 10.1016/j.ensm.2018.11.001
– ident: e_1_2_7_40_1
  doi: 10.1149/05026.0365ecst
– ident: e_1_2_7_15_1
  doi: 10.1007/s007060170110
– volume: 17
  start-page: 208
  year: 1998
  ident: e_1_2_7_7_1
  publication-title: Prog. Batteries Battery Mater.
  contributor:
    fullname: Winter M.
– ident: e_1_2_7_144_1
  doi: 10.1002/celc.202000713
– ident: e_1_2_7_57_1
  doi: 10.1038/s41560-020-0601-1
– ident: e_1_2_7_140_1
  doi: 10.1149/1945-7111/abec66
– ident: e_1_2_7_36_1
  doi: 10.1021/jacs.8b03408
– ident: e_1_2_7_50_1
  doi: 10.1021/acsenergylett.1c00514
– ident: e_1_2_7_54_1
  doi: 10.1002/aenm.201900784
– ident: e_1_2_7_99_1
  doi: 10.1021/acsami.8b07683
– ident: e_1_2_7_81_1
  doi: 10.1039/C9TA00126C
– ident: e_1_2_7_122_1
  doi: 10.1016/j.jpowsour.2012.08.066
– ident: e_1_2_7_119_1
  doi: 10.1149/2.0731412jes
– ident: e_1_2_7_44_1
  doi: 10.1021/la203712s
– ident: e_1_2_7_35_1
  doi: 10.1016/j.coche.2016.08.003
– ident: e_1_2_7_77_1
  doi: 10.1016/j.electacta.2017.05.062
– ident: e_1_2_7_87_1
  doi: 10.1149/2.092401jes
– ident: e_1_2_7_130_1
  doi: 10.1016/j.ssi.2012.03.042
– ident: e_1_2_7_51_1
  doi: 10.5796/electrochemistry.83.837
– ident: e_1_2_7_114_1
  doi: 10.1016/j.cplett.2017.07.009
– ident: e_1_2_7_71_1
  doi: 10.1016/j.electacta.2009.03.046
– ident: e_1_2_7_3_1
  doi: 10.1021/acscentsci.7b00288
– ident: e_1_2_7_120_1
  doi: 10.1039/C5CP03672K
– ident: e_1_2_7_143_1
  doi: 10.1016/j.electacta.2014.05.136
– ident: e_1_2_7_93_1
  doi: 10.1142/S1793604720510418
– ident: e_1_2_7_150_1
  doi: 10.1002/aenm.201900747
– ident: e_1_2_7_157_1
  doi: 10.1021/acs.nanolett.8b00298
– ident: e_1_2_7_70_1
  doi: 10.1016/j.jpowsour.2007.07.058
– ident: e_1_2_7_110_1
  doi: 10.1021/acsami.0c19347
– ident: e_1_2_7_171_1
  doi: 10.1016/j.matt.2019.09.020
– ident: e_1_2_7_107_1
  doi: 10.1016/j.jallcom.2016.11.248
– ident: e_1_2_7_43_1
  doi: 10.1149/2.029209jes
– ident: e_1_2_7_154_1
  doi: 10.1021/acs.jpcc.7b04132
– ident: e_1_2_7_26_1
  doi: 10.1016/S0167-2738(96)00389-X
– ident: e_1_2_7_80_1
  doi: 10.1016/j.progsolidstchem.2014.04.003
– ident: e_1_2_7_132_1
  doi: 10.1016/j.jpowsour.2007.06.149
– ident: e_1_2_7_149_1
  doi: 10.1007/s11581-018-2682-4
– ident: e_1_2_7_23_1
  doi: 10.1149/2.0361512jes
– ident: e_1_2_7_41_1
  doi: 10.1021/acsaem.0c02946
– ident: e_1_2_7_113_1
  doi: 10.1007/s11581-017-2143-5
– ident: e_1_2_7_116_1
  doi: 10.1149/2.0951608jes
– ident: e_1_2_7_121_1
  doi: 10.1016/j.elecom.2016.03.005
– ident: e_1_2_7_27_1
  doi: 10.1016/j.ensm.2020.11.028
– ident: e_1_2_7_13_1
  doi: 10.1002/smll.201702737
– ident: e_1_2_7_168_1
  doi: 10.1039/c3cc49269a
– volume: 10
  start-page: 9678
  year: 2015
  ident: e_1_2_7_49_1
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)11210-7
  contributor:
    fullname: Domi Y.
– ident: e_1_2_7_83_1
  doi: 10.1149/2.095205jes
– ident: e_1_2_7_125_1
  doi: 10.1016/j.jpowsour.2017.05.044
– ident: e_1_2_7_170_1
  doi: 10.1021/acs.chemmater.5b04408
– ident: e_1_2_7_2_1
  doi: 10.1002/aenm.202000089
– ident: e_1_2_7_128_1
  doi: 10.1149/1.2338771
– ident: e_1_2_7_63_1
  doi: 10.1002/cssc.201601636
– ident: e_1_2_7_106_1
  doi: 10.1038/s41467-021-21106-6
– ident: e_1_2_7_124_1
  doi: 10.1021/acs.chemmater.8b03764
– ident: e_1_2_7_66_1
  doi: 10.1149/2.0121514jes
– ident: e_1_2_7_85_1
  doi: 10.1002/cssc.201300770
– ident: e_1_2_7_32_1
  doi: 10.1021/cr500003w
– ident: e_1_2_7_48_1
  doi: 10.1016/j.jpowsour.2012.01.095
– ident: e_1_2_7_166_1
  doi: 10.1021/jp502261t
– ident: e_1_2_7_25_1
  doi: 10.1039/C0EE00281J
– ident: e_1_2_7_139_1
  doi: 10.1149/2.1121712jes
– ident: e_1_2_7_29_1
  doi: 10.1002/batt.201800123
– ident: e_1_2_7_165_1
  doi: 10.1039/c3cp44438d
– ident: e_1_2_7_153_1
  doi: 10.1002/slct.201600119
– ident: e_1_2_7_163_1
  doi: 10.1021/cm2034195
– ident: e_1_2_7_138_1
  doi: 10.1007/s10008-013-2005-7
– ident: e_1_2_7_47_1
  doi: 10.1149/2.076205jes
– ident: e_1_2_7_152_1
  doi: 10.1002/adma.201806620
– ident: e_1_2_7_84_1
  doi: 10.1021/jp404155y
– ident: e_1_2_7_89_1
  doi: 10.1021/acs.jpcc.5b01228
– ident: e_1_2_7_105_1
  doi: 10.1149/2.0621810jes
– ident: e_1_2_7_95_1
  doi: 10.1007/s10800-020-01484-3
– ident: e_1_2_7_115_1
  doi: 10.1016/j.jpowsour.2017.05.093
– ident: e_1_2_7_151_1
  doi: 10.1149/2.1211609jes
– ident: e_1_2_7_1_1
  doi: 10.1021/acs.chemrev.8b00422
– ident: e_1_2_7_73_1
  doi: 10.1021/acssuschemeng.0c01733
– ident: e_1_2_7_161_1
  doi: 10.1021/acsami.9b18252
– ident: e_1_2_7_135_1
  doi: 10.1016/j.jelechem.2018.12.026
– ident: e_1_2_7_14_1
  doi: 10.1039/C7CP05405J
– ident: e_1_2_7_31_1
  doi: 10.1021/cr030203g
– ident: e_1_2_7_127_1
  doi: 10.1021/acsami.5b01853
– ident: e_1_2_7_39_1
  doi: 10.1016/j.elecom.2013.04.010
SSID ssj0001121283
Score 2.3925202
Snippet As the demand for mobile energy storage devices has steadily increased during the past decades due to the rising popularity of portable electronics as well as...
Abstract As the demand for mobile energy storage devices has steadily increased during the past decades due to the rising popularity of portable electronics as...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Electrode materials
Electrodes
Electrolytes
Energy storage
Flux density
functional additives
Lithium
lithium salt
Lithium-ion batteries
Silicon
silicon electrode
Title Interfacing Si‐Based Electrodes: Impact of Liquid Electrolyte and Its Components
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202101898
https://www.proquest.com/docview/2638161466
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60RfAiPrFayx4ET0vTzWvjrWpLK1ZEjRQvYZ8Q0FRNevDmT_A3-kvc3bRpexI8hpANzO7MNzM78w0Ap4QJNxAhR1xyhjxBBKIBl4jr_ZfSEGgxc6M7ug0GsXc99sdLXfwlP0SVcDOaYe21UXDK8vaCNJSK11THd9hQTkVkHdS1b0PMucbe3SLL0tGm2XJxas0MUOj6zpy50cHt1SVWkWnhbi47rRZ1-ttga-Yuwm65vztgTWa7YMOWbfJ8D9zbhJ6iXAMQfEh_vr4vNCoJ2CuH2wiZn8Oh7YOEEwVv0vdpWr18-SwkpJmAwyKHxixMMlNUsQ_ifu_xcoBmUxIQN0w1SHR0FEId5TGloV0K1yFcdJiSIY2U6yviS9dTGugxd0NBuA6HOTWuUtRRjGoEOwC1TP_hEMCISSbM8A3MqUddn8jI1TrOvTCIuC-jBjibSyh5K8kwkpL2GCdGlkklywZozgWYzJQiT3Bgbim1aQ4aAFuh_rFK0r0aDauno_98dAw2sWlYsFVjTVArPqbyRLsRBWvZk9IC9e5T_Bz_ApzAwP8
link.rule.ids 315,786,790,11589,27955,27956,46085,46509,50847,50956
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60RfQiPrFadQ-Cp9A073ir2tJo24M2Il7CPiGgqZr04M2f4G_0l7ibV-1J8BhCNjC7M9_M7Mw3AGceYabDXKpRTolmMY9p2KFco3L_OVcEWkTd6I4nzjC0bh7tqppQ9cIU_BB1wk1pRm6vlYKrhHRnwRqK2UssAzxDcU753io0bUWq14Bm7yF8CheJlq60zjkdp1ROR3NNW6_IG3Wjs7zIMjgtPM7ffmsOPIMt2Cw9RtQrtngbVniyA2t55SZNd-Euz-kJTCUGofv4-_PrUgITQ_1ivg3j6QUK8lZINBNoFL_N4_rl80fGEU4YCrIUKcswS1RdxR6Eg_70aqiVgxI0qshqNNaVgQjWhUWERHfOTN2jrEsEd7EvTFt4NjctIbHeoKbLPCojYoqVt-R3BcESxPahkcg_HADyCSdMzd8wKLawaXvcN6WaU8t1fGpzvwXnlYSi14IPIyqYj41IyTKqZdmCdiXAqNSLNDIcdVEprbPTAiMX6h-rRL3rcVA_Hf7no1NYH07Ho2gUTG6PYMNQ_Qt5EVkbGtn7nB9LryIjJ-W5-QHTrsR4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oRuPF-Iwo6h5MPDWUPratNxQIVSBEJeG22WfSRAvacvDmT_A3-kvc3UKBk4nHpuk2md2Zb2Z25hsArkPKXcQDZjHBqOXxkFsEMWExtf9CaAItqm90-wPUHXkPY3-80sVf8EOUCTetGcZeawWfcllfkoYS_pao-M7RlFNRuAm2PKTcB83t7A2XWZaGMs2Gi1NpJrIC17cXzI22U19fYh2Zlu7mqtNqUKezD_bm7iJsFvt7ADZEegi2Tdkmy47Ak0noScIUAMHn5Ofr-06hEoftYrgNF9ktjE0fJJxI2EveZ0n58vUzF5CkHMZ5BrVZmKS6qOIYjDrtl_uuNZ-SYDHNVGPxhopCiC09KhW0C-7aIeMNKkVAIun6MvSF60kF9A5zAx4yFQ4zol2lqCEpUQh2Aiqp-sMpgBEVlOvhGw4jHnH9UESu0nHmBShivoiq4GYhITwtyDBwQXvsYC1LXMqyCmoLAeK5UmTYQfqWUplmVAWOEeofq-Bmqx-XT2f_-egK7AxbHdyLB4_nYNfRvQumgKwGKvnHTFwojyKnl-bQ_AL2qMHS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacing+Si%E2%80%90Based+Electrodes%3A+Impact+of+Liquid+Electrolyte+and+Its+Components&rft.jtitle=Advanced+materials+interfaces&rft.au=W%C3%B6lke%2C+Christian&rft.au=Sadeghi%2C+Bahareh+A.&rft.au=Eshetu%2C+Gebrekidan+G.&rft.au=Figgemeier%2C+Egbert&rft.date=2022-03-01&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=9&rft.issue=8&rft_id=info:doi/10.1002%2Fadmi.202101898&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_admi_202101898
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon