Postnatal Development of the Posterior Hypothalamic Theta Rhythm and Local Cell Discharges in Rat Brain Slices
ABSTRACT Theta rhythms have been recorded from rat brain slices of the posterior hypothalamic area (PHa), including the supramammillary and posterior hypothalamic nuclei. Additionally, in numerous studies theta‐related neurons were identified in the PHa according to the classification of Bland and C...
Saved in:
Published in | Developmental neurobiology (Hoboken, N.J.) Vol. 78; no. 11; pp. 1049 - 1063 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.11.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1932-8451 1932-846X 1932-846X |
DOI | 10.1002/dneu.22628 |
Cover
Loading…
Abstract | ABSTRACT
Theta rhythms have been recorded from rat brain slices of the posterior hypothalamic area (PHa), including the supramammillary and posterior hypothalamic nuclei. Additionally, in numerous studies theta‐related neurons were identified in the PHa according to the classification of Bland and Colom (Progress in Neurobiology, 41, 157–208, 1993). It is currently widely accepted that the PHa contributes to the process of HPC theta frequency programming at least in certain behavioral states. The postnatal development of the HPC and its ability to generate theta has also been a subject of studies. Specifically, it was found that theta oscillations are present in the HPC of 8–10 days old rat pups and turn into a well‐synchronized and high‐amplitude activity in the following few days. In our current study, we therefore focused on the postnatal development of cholinergically‐induced theta rhythm and theta‐related neuronal activity in PHa slices obtained from 8 to 24 days old rat pups. Theta activity was observed in the PHa preparations at the age of 8–10 days and then progressively increased its probability of occurrence, amplitude and synchrony up to the age of 22–24 days when it reached a plateau phase. A steady increase in the number of recorded neurons correlated with local theta oscillations was also observed. |
---|---|
AbstractList | Theta rhythms have been recorded from rat brain slices of the posterior hypothalamic area (PHa), including the supramammillary and posterior hypothalamic nuclei. Additionally, in numerous studies theta-related neurons were identified in the PHa according to the classification of Bland and Colom (Progress in Neurobiology, 41, 157-208, 1993). It is currently widely accepted that the PHa contributes to the process of HPC theta frequency programming at least in certain behavioral states. The postnatal development of the HPC and its ability to generate theta has also been a subject of studies. Specifically, it was found that theta oscillations are present in the HPC of 8-10 days old rat pups and turn into a well-synchronized and high-amplitude activity in the following few days. In our current study, we therefore focused on the postnatal development of cholinergically-induced theta rhythm and theta-related neuronal activity in PHa slices obtained from 8 to 24 days old rat pups. Theta activity was observed in the PHa preparations at the age of 8-10 days and then progressively increased its probability of occurrence, amplitude and synchrony up to the age of 22-24 days when it reached a plateau phase. A steady increase in the number of recorded neurons correlated with local theta oscillations was also observed. Theta rhythms have been recorded from rat brain slices of the posterior hypothalamic area (PHa), including the supramammillary and posterior hypothalamic nuclei. Additionally, in numerous studies theta‐related neurons were identified in the PHa according to the classification of Bland and Colom ( Progress in Neurobiology , 41, 157–208, 1993). It is currently widely accepted that the PHa contributes to the process of HPC theta frequency programming at least in certain behavioral states. The postnatal development of the HPC and its ability to generate theta has also been a subject of studies. Specifically, it was found that theta oscillations are present in the HPC of 8–10 days old rat pups and turn into a well‐synchronized and high‐amplitude activity in the following few days. In our current study, we therefore focused on the postnatal development of cholinergically‐induced theta rhythm and theta‐related neuronal activity in PHa slices obtained from 8 to 24 days old rat pups. Theta activity was observed in the PHa preparations at the age of 8–10 days and then progressively increased its probability of occurrence, amplitude and synchrony up to the age of 22–24 days when it reached a plateau phase. A steady increase in the number of recorded neurons correlated with local theta oscillations was also observed. Theta rhythms have been recorded from rat brain slices of the posterior hypothalamic area (PHa), including the supramammillary and posterior hypothalamic nuclei. Additionally, in numerous studies theta-related neurons were identified in the PHa according to the classification of Bland and Colom (Progress in Neurobiology, 41, 157-208, 1993). It is currently widely accepted that the PHa contributes to the process of HPC theta frequency programming at least in certain behavioral states. The postnatal development of the HPC and its ability to generate theta has also been a subject of studies. Specifically, it was found that theta oscillations are present in the HPC of 8-10 days old rat pups and turn into a well-synchronized and high-amplitude activity in the following few days. In our current study, we therefore focused on the postnatal development of cholinergically-induced theta rhythm and theta-related neuronal activity in PHa slices obtained from 8 to 24 days old rat pups. Theta activity was observed in the PHa preparations at the age of 8-10 days and then progressively increased its probability of occurrence, amplitude and synchrony up to the age of 22-24 days when it reached a plateau phase. A steady increase in the number of recorded neurons correlated with local theta oscillations was also observed.Theta rhythms have been recorded from rat brain slices of the posterior hypothalamic area (PHa), including the supramammillary and posterior hypothalamic nuclei. Additionally, in numerous studies theta-related neurons were identified in the PHa according to the classification of Bland and Colom (Progress in Neurobiology, 41, 157-208, 1993). It is currently widely accepted that the PHa contributes to the process of HPC theta frequency programming at least in certain behavioral states. The postnatal development of the HPC and its ability to generate theta has also been a subject of studies. Specifically, it was found that theta oscillations are present in the HPC of 8-10 days old rat pups and turn into a well-synchronized and high-amplitude activity in the following few days. In our current study, we therefore focused on the postnatal development of cholinergically-induced theta rhythm and theta-related neuronal activity in PHa slices obtained from 8 to 24 days old rat pups. Theta activity was observed in the PHa preparations at the age of 8-10 days and then progressively increased its probability of occurrence, amplitude and synchrony up to the age of 22-24 days when it reached a plateau phase. A steady increase in the number of recorded neurons correlated with local theta oscillations was also observed. ABSTRACT Theta rhythms have been recorded from rat brain slices of the posterior hypothalamic area (PHa), including the supramammillary and posterior hypothalamic nuclei. Additionally, in numerous studies theta‐related neurons were identified in the PHa according to the classification of Bland and Colom (Progress in Neurobiology, 41, 157–208, 1993). It is currently widely accepted that the PHa contributes to the process of HPC theta frequency programming at least in certain behavioral states. The postnatal development of the HPC and its ability to generate theta has also been a subject of studies. Specifically, it was found that theta oscillations are present in the HPC of 8–10 days old rat pups and turn into a well‐synchronized and high‐amplitude activity in the following few days. In our current study, we therefore focused on the postnatal development of cholinergically‐induced theta rhythm and theta‐related neuronal activity in PHa slices obtained from 8 to 24 days old rat pups. Theta activity was observed in the PHa preparations at the age of 8–10 days and then progressively increased its probability of occurrence, amplitude and synchrony up to the age of 22–24 days when it reached a plateau phase. A steady increase in the number of recorded neurons correlated with local theta oscillations was also observed. |
Author | Kazmierska, Paulina Staszelis, Agata Kowalczyk, Tomasz Konopacki, Jan Caban, Bartosz |
Author_xml | – sequence: 1 givenname: Bartosz orcidid: 0000-0002-4651-8492 surname: Caban fullname: Caban, Bartosz email: bartosz.caban@biol.uni.lodz.pl organization: University of Lodz – sequence: 2 givenname: Agata surname: Staszelis fullname: Staszelis, Agata organization: University of Lodz – sequence: 3 givenname: Paulina surname: Kazmierska fullname: Kazmierska, Paulina organization: University of Lodz – sequence: 4 givenname: Tomasz surname: Kowalczyk fullname: Kowalczyk, Tomasz organization: University of Lodz – sequence: 5 givenname: Jan surname: Konopacki fullname: Konopacki, Jan organization: University of Lodz |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30027636$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kVtrFTEUhYNU7EVf_AES8EWEU3OZ66Oe1lY4qNQWfAt7MjtOykxyTDLK-fdmemofivi0N-xvLRZ7HZMD5x0S8pKzU86YeNc7nE-FqETzhBzxVopVU1TfDx72kh-S4xhvGSulqNgzciizrK5kdUTcVx-TgwQjPcNfOPrthC5Rb2gakC5HDNYHernb-jTACJPV9HrABPRq2KVhouB6uvE6G6xxzC426gHCD4zUOnoFiX4IkLdvo9UYn5OnBsaIL-7nCbn5eH69vlxtvlx8Wr_frLQs62aluyWd7roSOJSi06I3bVPpFhEbNMCrrhV1wwuDUAijWV9ozTVUdS2NKRp5Qt7sfbfB_5wxJjXlXDkfOPRzVILVUoqScZ7R14_QWz8Hl9MpwUXdsoqXC_Xqnpq7CXu1DXaCsFN_P5mBt3tABx9jQPOAcKaWmtRSk7qrKcPsEaxtgmS9S_lZ478lfC_5bUfc_cdcnX0-v9lr_gC_GKUu |
CitedBy_id | crossref_primary_10_1016_j_neuroscience_2021_07_001 crossref_primary_10_5604_01_3001_0014_9333 crossref_primary_10_1002_hipo_23500 crossref_primary_10_3389_fncel_2023_1135154 crossref_primary_10_3389_fnins_2023_929461 |
Cites_doi | 10.1016/j.bbr.2005.04.004 10.1016/0301-0082(86)90019-5 10.1002/dneu.20632 10.1111/j.1460-9568.2006.04679.x 10.1002/hipo.20113 10.1016/0165-3806(88)90048-X 10.1016/j.pneurobio.2004.09.003 10.1016/0304-3940(95)11581-G 10.1016/0301-0082(93)90007-F 10.1002/(SICI)1098-1063(1998)8:6<666::AID-HIPO9>3.0.CO;2-A 10.1093/toxsci/kfj180 10.1097/00001756-199107000-00012 10.1016/0306-4522(86)90305-2 10.1016/j.neuroscience.2006.02.085 10.1016/0013-4694(72)90171-X 10.1152/jn.1995.74.1.322 10.1002/cne.903260408 10.1016/0006-8993(87)91009-2 10.1016/0306-4522(95)00045-K 10.1002/(SICI)1098-1063(1997)7:2<204::AID-HIPO7>3.0.CO;2-M 10.1016/0013-4694(69)90092-3 10.1002/1096-9861(20010122)429:4<515::AID-CNE1>3.0.CO;2-2 10.1016/S0149-7634(97)00015-8 10.1016/S0149-7634(97)00013-4 10.2170/jjphysiol.11.564 10.1002/hipo.22612 10.1523/JNEUROSCI.16-17-05547.1996 10.1002/hipo.22050 10.1016/j.jphysparis.2011.09.007 10.1002/hipo.450050605 10.1016/0006-8993(72)90275-2 10.1007/s12264-014-1497-1 10.1037/h0036397 10.1002/hipo.450010406 10.1016/j.brainres.2016.06.038 10.1152/jn.1954.17.6.533 10.1002/hipo.450030411 10.1016/0006-8993(87)90934-6 10.1152/jn.00315.2002 10.1097/00001756-199111000-00023 10.1111/j.1460-9568.2010.07545.x 10.1016/0006-8993(95)00174-O 10.1111/ejn.12091 10.1016/0006-8993(80)90208-5 10.1002/(SICI)1098-1063(1996)6:1<58::AID-HIPO10>3.0.CO;2-J 10.1016/0014-4886(79)90076-1 10.1016/0006-8993(89)91162-1 10.1016/S0010-9452(08)70874-8 10.1002/hipo.22167 10.1002/hipo.450040408 10.1007/BF00228702 10.1016/0006-8993(87)90909-7 10.1152/jn.1981.46.5.1140 10.1002/hipo.10111 |
ContentType | Journal Article |
Copyright | 2018 Wiley Periodicals, Inc. Copyright © 2018 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2018 Wiley Periodicals, Inc. – notice: Copyright © 2018 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/dneu.22628 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1932-846X |
EndPage | 1063 |
ExternalDocumentID | 30027636 10_1002_dneu_22628 DNEU22628 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Narodowe Centrum Nauki funderid: 2013/11/B/NZ4/04872 |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIVO ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GODZA H.T H.X HF~ HGLYW HHY HHZ HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XJT XV2 ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 1OB 7QR 7TK 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c3578-cb7636cbb5a1a52bc2df986c9eee8efa16b927814fea42fc0d4cc1ca6773ff483 |
IEDL.DBID | DR2 |
ISSN | 1932-8451 1932-846X |
IngestDate | Fri Jul 11 05:55:16 EDT 2025 Wed Aug 13 04:17:31 EDT 2025 Wed Feb 19 02:33:20 EST 2025 Thu Apr 24 22:58:07 EDT 2025 Tue Jul 01 03:03:45 EDT 2025 Wed Jan 22 16:30:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | extracellular recordings in vitro preparations supramammillary nucleus hypothalamus theta oscillations |
Language | English |
License | 2018 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3578-cb7636cbb5a1a52bc2df986c9eee8efa16b927814fea42fc0d4cc1ca6773ff483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4651-8492 |
PMID | 30027636 |
PQID | 2127906151 |
PQPubID | 946356 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2073325011 proquest_journals_2127906151 pubmed_primary_30027636 crossref_primary_10_1002_dneu_22628 crossref_citationtrail_10_1002_dneu_22628 wiley_primary_10_1002_dneu_22628_DNEU22628 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2018 2018-11-00 20181101 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: November 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Developmental neurobiology (Hoboken, N.J.) |
PublicationTitleAlternate | Dev Neurobiol |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1995; 74 1997; 81 1987; 422 2015; 31 1988; 466 2003; 13 1981; 46 1992; 326 2014; 24 1972; 43 2016a; 26 2001; 429 1993; 3 1997; 7 2004; 74 1974; 86 2006; 23 1995; 67 2002; 88 2008; 68 1954; 17 1979; 66 1980; 187 1996; 6 1991; 2 1991; 1 2006; 91 2013a; 37 1989; 493 1993; 41 1987; 405 1995; 678 2011; 33 1986; 19 2003; 39 1961; 11 1996; 16 2012; 106 1998; 22 1995; 5 1995; 191 2013b; 23 2005; 163 1993; 97 1986; 26 1987; 416 2006; 140 1972; 32 1969; 26 2016b; 1646 2005; 15 1994; 4 1998; 8 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 Vertes R.P. (e_1_2_5_51_1) 1997; 81 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – volume: 2 start-page: 401 year: 1991 end-page: 404 article-title: Induction of RSA‐like oscillations in both the in‐vitro and in‐vivo hippocampus publication-title: NeuroReport – volume: 66 start-page: 220 year: 1979 end-page: 237 article-title: Developmental aspects of hippocampal electrical activity and motor behavior in the rat publication-title: Experimental Neurology – volume: 326 start-page: 595 year: 1992 end-page: 622 article-title: PHA‐L analysis of projections from the supramammillary nucleus in the rat publication-title: The Journal of Comparative Neurology – volume: 88 start-page: 3046 year: 2002 end-page: 3066 article-title: Relationship between membrane potential oscillations and rhythmic discharges in identified hippocampal theta‐related cells publication-title: Journal of Neurophysiology – volume: 493 start-page: 269 year: 1989 end-page: 282 article-title: The classification of medial septum‐diagonal band cells as theta‐on or theta‐off in relation to hippocampal EEG states publication-title: Brain Research – volume: 74 start-page: 322 year: 1995 end-page: 333 article-title: Discharge patterns of hippocampal theta‐related cells in the caudal diencephalon of the urethan‐anesthetized rat publication-title: Journal of Neurophysiology – volume: 86 start-page: 768 year: 1974 end-page: 686 article-title: Effects of posterior hypothalamic lesions on voluntary behavior and hippocampal electroencephalograms in the rat publication-title: Journal of Comparative and Physiological Psychology – volume: 191 start-page: 161 year: 1995 end-page: 164 article-title: Ultradian rhythm in the delta and theta frequency bands of the EEG in the posterior hypothalamus of the rat publication-title: Neuroscience Letters – volume: 32 start-page: 209 year: 1972 end-page: 226 article-title: Differentiation of two reticulo‐hypothalamic systems regulating hippocampal activity publication-title: Electroencephalography and Clinical Neurophysiology – volume: 37 start-page: 679 year: 2013a end-page: 699 article-title: The generation of theta rhythm in hippocampal formation maintained in vitro publication-title: European Journal of Neuroscience – volume: 26 start-page: 1354 year: 2016a end-page: 1369 article-title: Cell discharge correlates of posterior hypothalamic theta rhythm recorded in anesthetized rats and brain slices publication-title: Hippocampus – volume: 678 start-page: 117 year: 1995 end-page: 126 article-title: Theta‐like rhythm in depth EEG activity of hypothalamic areas during spontaneous or electrically induced locomotion in the rat publication-title: Brain Research – volume: 17 start-page: 533 year: 1954 end-page: 557 article-title: Hippocampal electrical activity in arousal publication-title: Journal of Neurophysiology – volume: 4 start-page: 454 year: 1994 end-page: 473 article-title: The midline posterior hypothalamic region comprises a critical part of the ascending brainstem hippocampal synchronizing pathway publication-title: Hippocampus – volume: 31 start-page: 265 year: 2015 end-page: 270 article-title: Preserving GABAergic interneurons in acute brain slices of mice using the N‐methyl‐D‐glucamine‐based artificial cerebrospinal fluid method publication-title: Neuroscience Bulletin – volume: 33 start-page: 471 year: 2011 end-page: 481 article-title: Gap junction modulation of hippocampal formation theta and local cell discharges in anesthetized rats publication-title: European Journal of Neuroscience – volume: 429 start-page: 515 year: 2001 end-page: 529 article-title: Human and monkey fetal brain development of the supramammillary‐hippocampal projections: a system involved in the regulation of theta activity publication-title: The Journal of Comparative Neurology – volume: 2 start-page: 723 year: 1991 end-page: 725 article-title: Supramammillary cell firing and hippocampal rhythmical slow activity publication-title: NeuroReport – volume: 11 start-page: 564 year: 1961 end-page: 575 article-title: Effect of acute brain stem lesions on the electrical activities of the limbic system and neocortex publication-title: The Japanese Journal of Physiology – volume: 16 start-page: 5547 year: 1996 end-page: 5554 article-title: Evidence for differential control of posterior hypothalamic, supramammillary, and medial mammillary theta‐related cellular discharge by ascending and descending pathways publication-title: The Journal of Neuroscience – volume: 8 start-page: 666 year: 1998 end-page: 679 article-title: Intrinsic oscillations in CA3 hippocampal pyramids: physiological relevance to theta rhythm generation publication-title: Hippocampus – volume: 74 start-page: 127 year: 2004 end-page: 166 article-title: The supramammillary area: its organization, functions and relationship to the hippocampus publication-title: Progress in Neurobiology – volume: 106 start-page: 81 year: 2012 end-page: 92 article-title: Neural circuits underlying the generation of theta oscillations publication-title: Journal of Physiology‐Paris – volume: 13 start-page: 361 year: 2003 end-page: 374 article-title: Multiple hypothalamic sites control the frequency of hippocampal theta rhythm publication-title: Hippocampus – volume: 68 start-page: 934 year: 2008 end-page: 949 article-title: Developmental downregulation of GABAergic drive parallels formation of functional synapses in cultured mouse neocortical networks publication-title: Developmental Neurobiology – volume: 81 start-page: 893 year: 1997 end-page: 926 article-title: Brainstem‐diencephalo‐septohippocampal systems controlling the theta rhythm of the hippocampus publication-title: Neuroscience – volume: 7 start-page: 204 year: 1997 end-page: 214 article-title: Phase relations of rhythmic neuronal firing in the supramammillary nucleus and mammillary body to the hippocampal theta activity in urethane anesthetized rats publication-title: Hippocampus – volume: 5 start-page: 534 year: 1995 end-page: 545 article-title: Contribution of synapses in the medial supramammillary nucleus to the frequency of hippocampal theta rhythm in freely moving rats publication-title: Hippocampus – volume: 3 start-page: 517 year: 1993 end-page: 525 article-title: Mapping the differential effects of procaine on frequency and amplitude of reticularly elicited hippocampal rhythmical slow activity publication-title: Hippocampus – volume: 6 start-page: 58 year: 1996 end-page: 61 article-title: Synaptic plasticity during the cholinergic theta‐frequency oscillation in vitro publication-title: Hippocampus – volume: 19 start-page: 873 year: 1986 end-page: 898 article-title: An autoradiographic analysis of ascending projections from the medullary reticular formation in the rat publication-title: Neuroscience – volume: 97 start-page: 325 year: 1993 end-page: 333 article-title: Membrane potential oscillations in CA1 hippocampal pyramidal neurons in vitro: intrinsic rhythms and fluctuations entrained by sinusoidal injected current publication-title: Experimental Brain Research – volume: 22 start-page: 291 year: 1998 end-page: 302 article-title: Frequency modulation of hippocampal theta by the supramammillary nucleus, and other hypothalamo‐hippocampal interactions: mechanisms and functional implications publication-title: Neuroscience & Biobehavioral Reviews – volume: 23 start-page: 30 year: 2013b end-page: 39 article-title: Theta‐related gating cells in hippocampal formation: in vivo and in vitro study publication-title: Hippocampus – volume: 39 start-page: 993 year: 2003 end-page: 1008 article-title: The role of theta‐range oscillations in synchronising and integrating activity in distributed mnemonic networks publication-title: Cortex – volume: 43 start-page: 67 year: 1972 end-page: 88 article-title: Diencephalic and hippocampal mechanisms of motor activity in the rat: effects of posterior hypothalamic stimulation on behavior and hippocampal slow wave activity publication-title: Brain Research – volume: 41 start-page: 157 year: 1993 end-page: 208 article-title: Extrinsic and intrinsic properties underlying oscillation and synchrony in limbic cortex publication-title: Progress in Neurobiology – volume: 416 start-page: 289 year: 1987 end-page: 300 article-title: Intracellular theta‐rhythm generation in identified hippocampal pyramids publication-title: Brain Research – volume: 15 start-page: 827 year: 2005 end-page: 840 article-title: Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory publication-title: Hippocampus – volume: 1646 start-page: 551 year: 2016b end-page: 559 article-title: Cell discharge correlates of posterior hypothalamic theta rhythm. Recipe for success in recording stable field potential publication-title: Brain Research – volume: 422 start-page: 277 year: 1987 end-page: 286 article-title: State‐dependent spike train dynamics of hippocampal formation neurons: evidence for theta‐on and theta‐off cells publication-title: Brain Research – volume: 1 start-page: 381 year: 1991 end-page: 390 article-title: In vivo intrahippocampal microinfusion of carbachol and bicuculline induces theta‐like oscillations in the septally deafferented hippocampus publication-title: Hippocampus – volume: 187 start-page: 353 year: 1980 end-page: 368 article-title: Neuronal activity of the septum following various types of deafferentation publication-title: Brain Research – volume: 163 start-page: 107 year: 2005 end-page: 114 article-title: Different systems in the posterior hypothalamic nucleus of rats control theta frequency and trigger movement publication-title: Behavioural Brain Research – volume: 23 start-page: 1811 year: 2006 end-page: 1818 article-title: Firing cell repertoire during carbachol‐induced theta rhythm in rat hippocampal formation slices publication-title: European Journal of Neuroscience – volume: 466 start-page: 229 year: 1988 end-page: 232 article-title: The development of carbachol‐induced EEG 'theta' examined in hippocampal formation slices publication-title: Brain Research – volume: 26 start-page: 1 year: 1986 end-page: 54 article-title: The physiology and pharmacology of hippocampal formation theta rhythms publication-title: Prog Neurobiol – volume: 91 start-page: 540 year: 2006 end-page: 549 article-title: Effect of ketamine on dendritic arbor development and survival of immature GABAergic neurons in vitro publication-title: Toxicological Sciences – volume: 22 start-page: 259 year: 1998 end-page: 273 article-title: Anatomical, electrophysiological and pharmacological studies of ascending brainstem hippocampal synchronizing pathways publication-title: Neuroscience & Biobehavioral Reviews – volume: 26 start-page: 407 year: 1969 end-page: 418 article-title: Hippocampal electrical activity and voluntary movement in the rat publication-title: Electroencephalography and Clinical Neurophysiology – volume: 405 start-page: 196 year: 1987 end-page: 198 article-title: Carbachol‐induced EEG 'theta' activity in hippocampal brain slices publication-title: Brain Research – volume: 140 start-page: 1189 year: 2006 end-page: 1199 article-title: Phase shift of subthreshold theta oscillation in hippocampal CA1 pyramidal cell membrane by excitatory synaptic inputs publication-title: Neuroscience – volume: 67 start-page: 301 year: 1995 end-page: 312 article-title: The supramammillary nucleus: is it necessary for the mediation of hippocampal theta rhythm? publication-title: Neuroscience – volume: 46 start-page: 1140 year: 1981 end-page: 1159 article-title: An analysis of ascending brain stem systems involved in hippocampal synchronization and desynchronization publication-title: Journal of Neurophysiology – volume: 24 start-page: 7 year: 2014 end-page: 20 article-title: Atropine‐sensitive theta rhythm in the posterior hypothalamic area: in vivo and in vitro studies publication-title: Hippocampus – ident: e_1_2_5_56_1 doi: 10.1016/j.bbr.2005.04.004 – ident: e_1_2_5_5_1 doi: 10.1016/0301-0082(86)90019-5 – ident: e_1_2_5_28_1 doi: 10.1002/dneu.20632 – ident: e_1_2_5_32_1 doi: 10.1111/j.1460-9568.2006.04679.x – ident: e_1_2_5_13_1 doi: 10.1002/hipo.20113 – ident: e_1_2_5_30_1 doi: 10.1016/0165-3806(88)90048-X – ident: e_1_2_5_41_1 doi: 10.1016/j.pneurobio.2004.09.003 – volume: 81 start-page: 893 year: 1997 ident: e_1_2_5_51_1 article-title: Brainstem‐diencephalo‐septohippocampal systems controlling the theta rhythm of the hippocampus publication-title: Neuroscience – ident: e_1_2_5_18_1 doi: 10.1016/0304-3940(95)11581-G – ident: e_1_2_5_6_1 doi: 10.1016/0301-0082(93)90007-F – ident: e_1_2_5_45_1 doi: 10.1002/(SICI)1098-1063(1998)8:6<666::AID-HIPO9>3.0.CO;2-A – ident: e_1_2_5_53_1 doi: 10.1093/toxsci/kfj180 – ident: e_1_2_5_20_1 doi: 10.1097/00001756-199107000-00012 – ident: e_1_2_5_49_1 doi: 10.1016/0306-4522(86)90305-2 – ident: e_1_2_5_54_1 doi: 10.1016/j.neuroscience.2006.02.085 – ident: e_1_2_5_2_1 doi: 10.1016/0013-4694(72)90171-X – ident: e_1_2_5_7_1 doi: 10.1152/jn.1995.74.1.322 – ident: e_1_2_5_50_1 doi: 10.1002/cne.903260408 – ident: e_1_2_5_31_1 doi: 10.1016/0006-8993(87)91009-2 – ident: e_1_2_5_46_1 doi: 10.1016/0306-4522(95)00045-K – ident: e_1_2_5_29_1 doi: 10.1002/(SICI)1098-1063(1997)7:2<204::AID-HIPO7>3.0.CO;2-M – ident: e_1_2_5_47_1 doi: 10.1016/0013-4694(69)90092-3 – ident: e_1_2_5_3_1 doi: 10.1002/1096-9861(20010122)429:4<515::AID-CNE1>3.0.CO;2-2 – ident: e_1_2_5_26_1 doi: 10.1016/S0149-7634(97)00015-8 – ident: e_1_2_5_8_1 doi: 10.1016/S0149-7634(97)00013-4 – ident: e_1_2_5_22_1 doi: 10.2170/jjphysiol.11.564 – ident: e_1_2_5_11_1 doi: 10.1002/hipo.22612 – ident: e_1_2_5_25_1 doi: 10.1523/JNEUROSCI.16-17-05547.1996 – ident: e_1_2_5_34_1 doi: 10.1002/hipo.22050 – ident: e_1_2_5_42_1 doi: 10.1016/j.jphysparis.2011.09.007 – ident: e_1_2_5_37_1 doi: 10.1002/hipo.450050605 – ident: e_1_2_5_4_1 doi: 10.1016/0006-8993(72)90275-2 – ident: e_1_2_5_40_1 doi: 10.1007/s12264-014-1497-1 – ident: e_1_2_5_43_1 doi: 10.1037/h0036397 – ident: e_1_2_5_15_1 doi: 10.1002/hipo.450010406 – ident: e_1_2_5_12_1 doi: 10.1016/j.brainres.2016.06.038 – ident: e_1_2_5_19_1 doi: 10.1152/jn.1954.17.6.533 – ident: e_1_2_5_24_1 doi: 10.1002/hipo.450030411 – ident: e_1_2_5_14_1 doi: 10.1016/0006-8993(87)90934-6 – ident: e_1_2_5_9_1 doi: 10.1152/jn.00315.2002 – ident: e_1_2_5_23_1 doi: 10.1097/00001756-199111000-00023 – ident: e_1_2_5_10_1 doi: 10.1111/j.1460-9568.2010.07545.x – ident: e_1_2_5_44_1 doi: 10.1016/0006-8993(95)00174-O – ident: e_1_2_5_33_1 doi: 10.1111/ejn.12091 – ident: e_1_2_5_52_1 doi: 10.1016/0006-8993(80)90208-5 – ident: e_1_2_5_21_1 doi: 10.1002/(SICI)1098-1063(1996)6:1<58::AID-HIPO10>3.0.CO;2-J – ident: e_1_2_5_36_1 doi: 10.1016/0014-4886(79)90076-1 – ident: e_1_2_5_16_1 doi: 10.1016/0006-8993(89)91162-1 – ident: e_1_2_5_27_1 doi: 10.1016/S0010-9452(08)70874-8 – ident: e_1_2_5_35_1 doi: 10.1002/hipo.22167 – ident: e_1_2_5_39_1 doi: 10.1002/hipo.450040408 – ident: e_1_2_5_17_1 doi: 10.1007/BF00228702 – ident: e_1_2_5_38_1 doi: 10.1016/0006-8993(87)90909-7 – ident: e_1_2_5_48_1 doi: 10.1152/jn.1981.46.5.1140 – ident: e_1_2_5_55_1 doi: 10.1002/hipo.10111 |
SSID | ssj0053260 |
Score | 2.275861 |
Snippet | ABSTRACT
Theta rhythms have been recorded from rat brain slices of the posterior hypothalamic area (PHa), including the supramammillary and posterior... Theta rhythms have been recorded from rat brain slices of the posterior hypothalamic area (PHa), including the supramammillary and posterior hypothalamic... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1049 |
SubjectTerms | Animals Animals, Newborn Brain - growth & development Brain slice preparation Electric Stimulation extracellular recordings Hippocampus - physiology Hypothalamus Hypothalamus, Posterior - growth & development in vitro preparations Male Nervous system Neurons - physiology Neurosciences Rats, Wistar Rodents supramammillary nucleus theta oscillations Theta Rhythm - physiology Theta rhythms |
Title | Postnatal Development of the Posterior Hypothalamic Theta Rhythm and Local Cell Discharges in Rat Brain Slices |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdneu.22628 https://www.ncbi.nlm.nih.gov/pubmed/30027636 https://www.proquest.com/docview/2127906151 https://www.proquest.com/docview/2073325011 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5VPXHhVR4pBU0FQgJp0-yu7exKXPpUhKCHQKRe0Mr22mpF6lTN5hB-PTPeZNsCQoLbSp59eWY8n-3xNwBvaiHqtJY6qSk-0ARFqsSUnLbj_cCWFI9yyQecP5-q0UR8PJNnG_BhfRam5YfoFtzYM-J4zQ6uzXzvhjS0Dm7RJ_CQ8UlfTtZiRDTuuKMk4ZJBu6VMLi9k2nGTZns3t96NRr9BzLuINYackwfwbf2xbabJ9_6iMX374xcex__9m4dwf4VFcb81nkew4cJj2NoPNA-_XOJbjNmhcdl9CwJX9Q281oO38oxw5pEQJHIjmfLsGkfLK9K9nnKZeyQbbDSOz5fN-SXqUOMnjpx46Kb0lIt5ZGlyc7wIONYNHnC1Cvwy5aHrCUxOjr8ejpJVrYbEMl9OYg0NVMoaI3WqZWZsVvuyULZ0zhXO61SZMmN6Le-0yLwd1MLa1Go1HObeiyJ_CpthFtxzQOmEE1qmVngjhoUhmUINhJBa5soNVQ_erXVW2RWROdfTmFYtBXNWcWdWsTN78LqTvWrpO_4otbNWfbVy4XnF1PdlBHw92O2ayfl4R0UHN1uQDJe8JBCZksyz1mS61-Q846c-6cH7qPi_vL86Oj2exKvtfxF-AfcIvhXtycgd2GyuF-4lQaTGvIqu8BNiwAzU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbG9gAvwBiMwhg3gZBAStcktps8jv1QGV0fyirtLbIdW5vo3GlNH8pfz52TZQwQ0niL5Eus2He-7-zzd4y9Lzkv41KoqET_gAGKkJHOKW3HuZ7J0R-lgi44n4zkYMKPz8RZk5tDd2Fqfoh2w40sI6zXZOC0Ib17yxpaervoInpIsgdsjUp6h4hq3LJHCUQmvfpQGY2ei7hlJ012b9-964_-AJl3MWtwOkdP6sqq88BVSLkm37uLSnfNj9-YHP_7f56yxw0chb1af9bZivXP2Maex1D8cgkfICSIhp33DeapsK-n7R74JdUIZg4QRAI1ojbPrmGwvMLpV1OqdA-ohpWC8fmyOr8E5UsYkvOEfTvFr1zMA1GTncOFh7Gq4DMVrIBvU1q9nrPJ0eHp_iBqyjVEhihzIqNxrZJGa6FiJRJtktLlmTS5tTazTsVS5wkxbDmreOJMr-TGxEbJfj91jmfpC7bqZ96-ZCAst1yJ2HCneT_TKJPJHudCiVTavuywjzeTVpiGy5xKakyLmoU5KWgwizCYHfaulb2qGTz-KrV1M_dFY8Xzgtjv84D5OmynbUb7o0MV5e1sgTJU9RJxZIwym7XOtN2kFPTjmHTYpzDz_-i_OBgdTsLTq_sIv2UPB6cnw2L4ZfT1NXuEaC6rL0pusdXqemHfIGKq9Hawi58c5hDv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIiEuvMojUMAIhATSpvuwnV2JS2kaBSgRCkTqBa1sr61WpE7UbA7h1zPjTbYUEBLcVvLsyzPj-WyPvwF4UXFeJZVQUYXxAScoQka6oLQd52JTYDzKBB1w_jiSwwl_fyyOt-DN5ixMww_RLriRZ4Txmhx8Xrm9C9LQyttlF8FDml-Bq1zGOdl0f9ySRwkEJnGzp4w-z0XSkpOmexf3Xg5Hv2HMy5A1xJzBTfi6-dom1eRbd1nrrvn-C5Hj__7OLbixBqNsv7Ge27Bl_R3Y2fc4ET9bsZcspIeGdfcd8FTW19NiD_sp0YjNHEMIyagRbXl2zoarOSpfTanOPUMjrBUbn6zqkzOmfMWOKHSyAzvFp5wuAk2TXbBTz8aqZm-pXAX7PKWx6y5MBodfDobRulhDZIgwJzIaRypptBYqUSLVJq1ckUtTWGtz61QidZESv5aziqfOxBU3JjFK9nqZczzP7sG2n3n7AJiw3HIlEsOd5r1co0wuY86FEpm0PdmBVxudlWbNZE4FNaZlw8GcltSZZejMDjxvZecNf8cfpXY3qi_XPrwoifu-CIivA8_aZvQ-2lJR3s6WKEM1LxFFJihzvzGZ9jUZTfmxTzrwOij-L-8v-6PDSbh6-C_CT-Hap_6gPHo3-vAIriOUy5tTkruwXZ8v7WOES7V-ErziB_8ID6c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Postnatal+Development+of+the+Posterior+Hypothalamic+Theta+Rhythm+and+Local+Cell+Discharges+in+Rat+Brain+Slices&rft.jtitle=Developmental+neurobiology+%28Hoboken%2C+N.J.%29&rft.au=Caban%2C+Bartosz&rft.au=Staszelis%2C+Agata&rft.au=Kazmierska%2C+Paulina&rft.au=Kowalczyk%2C+Tomasz&rft.date=2018-11-01&rft.eissn=1932-846X&rft.volume=78&rft.issue=11&rft.spage=1049&rft_id=info:doi/10.1002%2Fdneu.22628&rft_id=info%3Apmid%2F30027636&rft.externalDocID=30027636 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-8451&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-8451&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-8451&client=summon |