Postnatal Development of the Posterior Hypothalamic Theta Rhythm and Local Cell Discharges in Rat Brain Slices

ABSTRACT Theta rhythms have been recorded from rat brain slices of the posterior hypothalamic area (PHa), including the supramammillary and posterior hypothalamic nuclei. Additionally, in numerous studies theta‐related neurons were identified in the PHa according to the classification of Bland and C...

Full description

Saved in:
Bibliographic Details
Published inDevelopmental neurobiology (Hoboken, N.J.) Vol. 78; no. 11; pp. 1049 - 1063
Main Authors Caban, Bartosz, Staszelis, Agata, Kazmierska, Paulina, Kowalczyk, Tomasz, Konopacki, Jan
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.11.2018
Subjects
Online AccessGet full text
ISSN1932-8451
1932-846X
1932-846X
DOI10.1002/dneu.22628

Cover

Loading…
Abstract ABSTRACT Theta rhythms have been recorded from rat brain slices of the posterior hypothalamic area (PHa), including the supramammillary and posterior hypothalamic nuclei. Additionally, in numerous studies theta‐related neurons were identified in the PHa according to the classification of Bland and Colom (Progress in Neurobiology, 41, 157–208, 1993). It is currently widely accepted that the PHa contributes to the process of HPC theta frequency programming at least in certain behavioral states. The postnatal development of the HPC and its ability to generate theta has also been a subject of studies. Specifically, it was found that theta oscillations are present in the HPC of 8–10 days old rat pups and turn into a well‐synchronized and high‐amplitude activity in the following few days. In our current study, we therefore focused on the postnatal development of cholinergically‐induced theta rhythm and theta‐related neuronal activity in PHa slices obtained from 8 to 24 days old rat pups. Theta activity was observed in the PHa preparations at the age of 8–10 days and then progressively increased its probability of occurrence, amplitude and synchrony up to the age of 22–24 days when it reached a plateau phase. A steady increase in the number of recorded neurons correlated with local theta oscillations was also observed.
AbstractList Theta rhythms have been recorded from rat brain slices of the posterior hypothalamic area (PHa), including the supramammillary and posterior hypothalamic nuclei. Additionally, in numerous studies theta-related neurons were identified in the PHa according to the classification of Bland and Colom (Progress in Neurobiology, 41, 157-208, 1993). It is currently widely accepted that the PHa contributes to the process of HPC theta frequency programming at least in certain behavioral states. The postnatal development of the HPC and its ability to generate theta has also been a subject of studies. Specifically, it was found that theta oscillations are present in the HPC of 8-10 days old rat pups and turn into a well-synchronized and high-amplitude activity in the following few days. In our current study, we therefore focused on the postnatal development of cholinergically-induced theta rhythm and theta-related neuronal activity in PHa slices obtained from 8 to 24 days old rat pups. Theta activity was observed in the PHa preparations at the age of 8-10 days and then progressively increased its probability of occurrence, amplitude and synchrony up to the age of 22-24 days when it reached a plateau phase. A steady increase in the number of recorded neurons correlated with local theta oscillations was also observed.
Theta rhythms have been recorded from rat brain slices of the posterior hypothalamic area (PHa), including the supramammillary and posterior hypothalamic nuclei. Additionally, in numerous studies theta‐related neurons were identified in the PHa according to the classification of Bland and Colom ( Progress in Neurobiology , 41, 157–208, 1993). It is currently widely accepted that the PHa contributes to the process of HPC theta frequency programming at least in certain behavioral states. The postnatal development of the HPC and its ability to generate theta has also been a subject of studies. Specifically, it was found that theta oscillations are present in the HPC of 8–10 days old rat pups and turn into a well‐synchronized and high‐amplitude activity in the following few days. In our current study, we therefore focused on the postnatal development of cholinergically‐induced theta rhythm and theta‐related neuronal activity in PHa slices obtained from 8 to 24 days old rat pups. Theta activity was observed in the PHa preparations at the age of 8–10 days and then progressively increased its probability of occurrence, amplitude and synchrony up to the age of 22–24 days when it reached a plateau phase. A steady increase in the number of recorded neurons correlated with local theta oscillations was also observed.
Theta rhythms have been recorded from rat brain slices of the posterior hypothalamic area (PHa), including the supramammillary and posterior hypothalamic nuclei. Additionally, in numerous studies theta-related neurons were identified in the PHa according to the classification of Bland and Colom (Progress in Neurobiology, 41, 157-208, 1993). It is currently widely accepted that the PHa contributes to the process of HPC theta frequency programming at least in certain behavioral states. The postnatal development of the HPC and its ability to generate theta has also been a subject of studies. Specifically, it was found that theta oscillations are present in the HPC of 8-10 days old rat pups and turn into a well-synchronized and high-amplitude activity in the following few days. In our current study, we therefore focused on the postnatal development of cholinergically-induced theta rhythm and theta-related neuronal activity in PHa slices obtained from 8 to 24 days old rat pups. Theta activity was observed in the PHa preparations at the age of 8-10 days and then progressively increased its probability of occurrence, amplitude and synchrony up to the age of 22-24 days when it reached a plateau phase. A steady increase in the number of recorded neurons correlated with local theta oscillations was also observed.Theta rhythms have been recorded from rat brain slices of the posterior hypothalamic area (PHa), including the supramammillary and posterior hypothalamic nuclei. Additionally, in numerous studies theta-related neurons were identified in the PHa according to the classification of Bland and Colom (Progress in Neurobiology, 41, 157-208, 1993). It is currently widely accepted that the PHa contributes to the process of HPC theta frequency programming at least in certain behavioral states. The postnatal development of the HPC and its ability to generate theta has also been a subject of studies. Specifically, it was found that theta oscillations are present in the HPC of 8-10 days old rat pups and turn into a well-synchronized and high-amplitude activity in the following few days. In our current study, we therefore focused on the postnatal development of cholinergically-induced theta rhythm and theta-related neuronal activity in PHa slices obtained from 8 to 24 days old rat pups. Theta activity was observed in the PHa preparations at the age of 8-10 days and then progressively increased its probability of occurrence, amplitude and synchrony up to the age of 22-24 days when it reached a plateau phase. A steady increase in the number of recorded neurons correlated with local theta oscillations was also observed.
ABSTRACT Theta rhythms have been recorded from rat brain slices of the posterior hypothalamic area (PHa), including the supramammillary and posterior hypothalamic nuclei. Additionally, in numerous studies theta‐related neurons were identified in the PHa according to the classification of Bland and Colom (Progress in Neurobiology, 41, 157–208, 1993). It is currently widely accepted that the PHa contributes to the process of HPC theta frequency programming at least in certain behavioral states. The postnatal development of the HPC and its ability to generate theta has also been a subject of studies. Specifically, it was found that theta oscillations are present in the HPC of 8–10 days old rat pups and turn into a well‐synchronized and high‐amplitude activity in the following few days. In our current study, we therefore focused on the postnatal development of cholinergically‐induced theta rhythm and theta‐related neuronal activity in PHa slices obtained from 8 to 24 days old rat pups. Theta activity was observed in the PHa preparations at the age of 8–10 days and then progressively increased its probability of occurrence, amplitude and synchrony up to the age of 22–24 days when it reached a plateau phase. A steady increase in the number of recorded neurons correlated with local theta oscillations was also observed.
Author Kazmierska, Paulina
Staszelis, Agata
Kowalczyk, Tomasz
Konopacki, Jan
Caban, Bartosz
Author_xml – sequence: 1
  givenname: Bartosz
  orcidid: 0000-0002-4651-8492
  surname: Caban
  fullname: Caban, Bartosz
  email: bartosz.caban@biol.uni.lodz.pl
  organization: University of Lodz
– sequence: 2
  givenname: Agata
  surname: Staszelis
  fullname: Staszelis, Agata
  organization: University of Lodz
– sequence: 3
  givenname: Paulina
  surname: Kazmierska
  fullname: Kazmierska, Paulina
  organization: University of Lodz
– sequence: 4
  givenname: Tomasz
  surname: Kowalczyk
  fullname: Kowalczyk, Tomasz
  organization: University of Lodz
– sequence: 5
  givenname: Jan
  surname: Konopacki
  fullname: Konopacki, Jan
  organization: University of Lodz
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30027636$$D View this record in MEDLINE/PubMed
BookMark eNp9kVtrFTEUhYNU7EVf_AES8EWEU3OZ66Oe1lY4qNQWfAt7MjtOykxyTDLK-fdmemofivi0N-xvLRZ7HZMD5x0S8pKzU86YeNc7nE-FqETzhBzxVopVU1TfDx72kh-S4xhvGSulqNgzciizrK5kdUTcVx-TgwQjPcNfOPrthC5Rb2gakC5HDNYHernb-jTACJPV9HrABPRq2KVhouB6uvE6G6xxzC426gHCD4zUOnoFiX4IkLdvo9UYn5OnBsaIL-7nCbn5eH69vlxtvlx8Wr_frLQs62aluyWd7roSOJSi06I3bVPpFhEbNMCrrhV1wwuDUAijWV9ozTVUdS2NKRp5Qt7sfbfB_5wxJjXlXDkfOPRzVILVUoqScZ7R14_QWz8Hl9MpwUXdsoqXC_Xqnpq7CXu1DXaCsFN_P5mBt3tABx9jQPOAcKaWmtRSk7qrKcPsEaxtgmS9S_lZ478lfC_5bUfc_cdcnX0-v9lr_gC_GKUu
CitedBy_id crossref_primary_10_1016_j_neuroscience_2021_07_001
crossref_primary_10_5604_01_3001_0014_9333
crossref_primary_10_1002_hipo_23500
crossref_primary_10_3389_fncel_2023_1135154
crossref_primary_10_3389_fnins_2023_929461
Cites_doi 10.1016/j.bbr.2005.04.004
10.1016/0301-0082(86)90019-5
10.1002/dneu.20632
10.1111/j.1460-9568.2006.04679.x
10.1002/hipo.20113
10.1016/0165-3806(88)90048-X
10.1016/j.pneurobio.2004.09.003
10.1016/0304-3940(95)11581-G
10.1016/0301-0082(93)90007-F
10.1002/(SICI)1098-1063(1998)8:6<666::AID-HIPO9>3.0.CO;2-A
10.1093/toxsci/kfj180
10.1097/00001756-199107000-00012
10.1016/0306-4522(86)90305-2
10.1016/j.neuroscience.2006.02.085
10.1016/0013-4694(72)90171-X
10.1152/jn.1995.74.1.322
10.1002/cne.903260408
10.1016/0006-8993(87)91009-2
10.1016/0306-4522(95)00045-K
10.1002/(SICI)1098-1063(1997)7:2<204::AID-HIPO7>3.0.CO;2-M
10.1016/0013-4694(69)90092-3
10.1002/1096-9861(20010122)429:4<515::AID-CNE1>3.0.CO;2-2
10.1016/S0149-7634(97)00015-8
10.1016/S0149-7634(97)00013-4
10.2170/jjphysiol.11.564
10.1002/hipo.22612
10.1523/JNEUROSCI.16-17-05547.1996
10.1002/hipo.22050
10.1016/j.jphysparis.2011.09.007
10.1002/hipo.450050605
10.1016/0006-8993(72)90275-2
10.1007/s12264-014-1497-1
10.1037/h0036397
10.1002/hipo.450010406
10.1016/j.brainres.2016.06.038
10.1152/jn.1954.17.6.533
10.1002/hipo.450030411
10.1016/0006-8993(87)90934-6
10.1152/jn.00315.2002
10.1097/00001756-199111000-00023
10.1111/j.1460-9568.2010.07545.x
10.1016/0006-8993(95)00174-O
10.1111/ejn.12091
10.1016/0006-8993(80)90208-5
10.1002/(SICI)1098-1063(1996)6:1<58::AID-HIPO10>3.0.CO;2-J
10.1016/0014-4886(79)90076-1
10.1016/0006-8993(89)91162-1
10.1016/S0010-9452(08)70874-8
10.1002/hipo.22167
10.1002/hipo.450040408
10.1007/BF00228702
10.1016/0006-8993(87)90909-7
10.1152/jn.1981.46.5.1140
10.1002/hipo.10111
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
Copyright © 2018 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
– notice: Copyright © 2018 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1002/dneu.22628
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1932-846X
EndPage 1063
ExternalDocumentID 30027636
10_1002_dneu_22628
DNEU22628
Genre article
Journal Article
GrantInformation_xml – fundername: Narodowe Centrum Nauki
  funderid: 2013/11/B/NZ4/04872
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
XV2
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
1OB
7QR
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3578-cb7636cbb5a1a52bc2df986c9eee8efa16b927814fea42fc0d4cc1ca6773ff483
IEDL.DBID DR2
ISSN 1932-8451
1932-846X
IngestDate Fri Jul 11 05:55:16 EDT 2025
Wed Aug 13 04:17:31 EDT 2025
Wed Feb 19 02:33:20 EST 2025
Thu Apr 24 22:58:07 EDT 2025
Tue Jul 01 03:03:45 EDT 2025
Wed Jan 22 16:30:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords extracellular recordings
in vitro preparations
supramammillary nucleus
hypothalamus
theta oscillations
Language English
License 2018 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3578-cb7636cbb5a1a52bc2df986c9eee8efa16b927814fea42fc0d4cc1ca6773ff483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4651-8492
PMID 30027636
PQID 2127906151
PQPubID 946356
PageCount 15
ParticipantIDs proquest_miscellaneous_2073325011
proquest_journals_2127906151
pubmed_primary_30027636
crossref_primary_10_1002_dneu_22628
crossref_citationtrail_10_1002_dneu_22628
wiley_primary_10_1002_dneu_22628_DNEU22628
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2018
2018-11-00
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Developmental neurobiology (Hoboken, N.J.)
PublicationTitleAlternate Dev Neurobiol
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1995; 74
1997; 81
1987; 422
2015; 31
1988; 466
2003; 13
1981; 46
1992; 326
2014; 24
1972; 43
2016a; 26
2001; 429
1993; 3
1997; 7
2004; 74
1974; 86
2006; 23
1995; 67
2002; 88
2008; 68
1954; 17
1979; 66
1980; 187
1996; 6
1991; 2
1991; 1
2006; 91
2013a; 37
1989; 493
1993; 41
1987; 405
1995; 678
2011; 33
1986; 19
2003; 39
1961; 11
1996; 16
2012; 106
1998; 22
1995; 5
1995; 191
2013b; 23
2005; 163
1993; 97
1986; 26
1987; 416
2006; 140
1972; 32
1969; 26
2016b; 1646
2005; 15
1994; 4
1998; 8
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
Vertes R.P. (e_1_2_5_51_1) 1997; 81
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – volume: 2
  start-page: 401
  year: 1991
  end-page: 404
  article-title: Induction of RSA‐like oscillations in both the in‐vitro and in‐vivo hippocampus
  publication-title: NeuroReport
– volume: 66
  start-page: 220
  year: 1979
  end-page: 237
  article-title: Developmental aspects of hippocampal electrical activity and motor behavior in the rat
  publication-title: Experimental Neurology
– volume: 326
  start-page: 595
  year: 1992
  end-page: 622
  article-title: PHA‐L analysis of projections from the supramammillary nucleus in the rat
  publication-title: The Journal of Comparative Neurology
– volume: 88
  start-page: 3046
  year: 2002
  end-page: 3066
  article-title: Relationship between membrane potential oscillations and rhythmic discharges in identified hippocampal theta‐related cells
  publication-title: Journal of Neurophysiology
– volume: 493
  start-page: 269
  year: 1989
  end-page: 282
  article-title: The classification of medial septum‐diagonal band cells as theta‐on or theta‐off in relation to hippocampal EEG states
  publication-title: Brain Research
– volume: 74
  start-page: 322
  year: 1995
  end-page: 333
  article-title: Discharge patterns of hippocampal theta‐related cells in the caudal diencephalon of the urethan‐anesthetized rat
  publication-title: Journal of Neurophysiology
– volume: 86
  start-page: 768
  year: 1974
  end-page: 686
  article-title: Effects of posterior hypothalamic lesions on voluntary behavior and hippocampal electroencephalograms in the rat
  publication-title: Journal of Comparative and Physiological Psychology
– volume: 191
  start-page: 161
  year: 1995
  end-page: 164
  article-title: Ultradian rhythm in the delta and theta frequency bands of the EEG in the posterior hypothalamus of the rat
  publication-title: Neuroscience Letters
– volume: 32
  start-page: 209
  year: 1972
  end-page: 226
  article-title: Differentiation of two reticulo‐hypothalamic systems regulating hippocampal activity
  publication-title: Electroencephalography and Clinical Neurophysiology
– volume: 37
  start-page: 679
  year: 2013a
  end-page: 699
  article-title: The generation of theta rhythm in hippocampal formation maintained in vitro
  publication-title: European Journal of Neuroscience
– volume: 26
  start-page: 1354
  year: 2016a
  end-page: 1369
  article-title: Cell discharge correlates of posterior hypothalamic theta rhythm recorded in anesthetized rats and brain slices
  publication-title: Hippocampus
– volume: 678
  start-page: 117
  year: 1995
  end-page: 126
  article-title: Theta‐like rhythm in depth EEG activity of hypothalamic areas during spontaneous or electrically induced locomotion in the rat
  publication-title: Brain Research
– volume: 17
  start-page: 533
  year: 1954
  end-page: 557
  article-title: Hippocampal electrical activity in arousal
  publication-title: Journal of Neurophysiology
– volume: 4
  start-page: 454
  year: 1994
  end-page: 473
  article-title: The midline posterior hypothalamic region comprises a critical part of the ascending brainstem hippocampal synchronizing pathway
  publication-title: Hippocampus
– volume: 31
  start-page: 265
  year: 2015
  end-page: 270
  article-title: Preserving GABAergic interneurons in acute brain slices of mice using the N‐methyl‐D‐glucamine‐based artificial cerebrospinal fluid method
  publication-title: Neuroscience Bulletin
– volume: 33
  start-page: 471
  year: 2011
  end-page: 481
  article-title: Gap junction modulation of hippocampal formation theta and local cell discharges in anesthetized rats
  publication-title: European Journal of Neuroscience
– volume: 429
  start-page: 515
  year: 2001
  end-page: 529
  article-title: Human and monkey fetal brain development of the supramammillary‐hippocampal projections: a system involved in the regulation of theta activity
  publication-title: The Journal of Comparative Neurology
– volume: 2
  start-page: 723
  year: 1991
  end-page: 725
  article-title: Supramammillary cell firing and hippocampal rhythmical slow activity
  publication-title: NeuroReport
– volume: 11
  start-page: 564
  year: 1961
  end-page: 575
  article-title: Effect of acute brain stem lesions on the electrical activities of the limbic system and neocortex
  publication-title: The Japanese Journal of Physiology
– volume: 16
  start-page: 5547
  year: 1996
  end-page: 5554
  article-title: Evidence for differential control of posterior hypothalamic, supramammillary, and medial mammillary theta‐related cellular discharge by ascending and descending pathways
  publication-title: The Journal of Neuroscience
– volume: 8
  start-page: 666
  year: 1998
  end-page: 679
  article-title: Intrinsic oscillations in CA3 hippocampal pyramids: physiological relevance to theta rhythm generation
  publication-title: Hippocampus
– volume: 74
  start-page: 127
  year: 2004
  end-page: 166
  article-title: The supramammillary area: its organization, functions and relationship to the hippocampus
  publication-title: Progress in Neurobiology
– volume: 106
  start-page: 81
  year: 2012
  end-page: 92
  article-title: Neural circuits underlying the generation of theta oscillations
  publication-title: Journal of Physiology‐Paris
– volume: 13
  start-page: 361
  year: 2003
  end-page: 374
  article-title: Multiple hypothalamic sites control the frequency of hippocampal theta rhythm
  publication-title: Hippocampus
– volume: 68
  start-page: 934
  year: 2008
  end-page: 949
  article-title: Developmental downregulation of GABAergic drive parallels formation of functional synapses in cultured mouse neocortical networks
  publication-title: Developmental Neurobiology
– volume: 81
  start-page: 893
  year: 1997
  end-page: 926
  article-title: Brainstem‐diencephalo‐septohippocampal systems controlling the theta rhythm of the hippocampus
  publication-title: Neuroscience
– volume: 7
  start-page: 204
  year: 1997
  end-page: 214
  article-title: Phase relations of rhythmic neuronal firing in the supramammillary nucleus and mammillary body to the hippocampal theta activity in urethane anesthetized rats
  publication-title: Hippocampus
– volume: 5
  start-page: 534
  year: 1995
  end-page: 545
  article-title: Contribution of synapses in the medial supramammillary nucleus to the frequency of hippocampal theta rhythm in freely moving rats
  publication-title: Hippocampus
– volume: 3
  start-page: 517
  year: 1993
  end-page: 525
  article-title: Mapping the differential effects of procaine on frequency and amplitude of reticularly elicited hippocampal rhythmical slow activity
  publication-title: Hippocampus
– volume: 6
  start-page: 58
  year: 1996
  end-page: 61
  article-title: Synaptic plasticity during the cholinergic theta‐frequency oscillation in vitro
  publication-title: Hippocampus
– volume: 19
  start-page: 873
  year: 1986
  end-page: 898
  article-title: An autoradiographic analysis of ascending projections from the medullary reticular formation in the rat
  publication-title: Neuroscience
– volume: 97
  start-page: 325
  year: 1993
  end-page: 333
  article-title: Membrane potential oscillations in CA1 hippocampal pyramidal neurons in vitro: intrinsic rhythms and fluctuations entrained by sinusoidal injected current
  publication-title: Experimental Brain Research
– volume: 22
  start-page: 291
  year: 1998
  end-page: 302
  article-title: Frequency modulation of hippocampal theta by the supramammillary nucleus, and other hypothalamo‐hippocampal interactions: mechanisms and functional implications
  publication-title: Neuroscience & Biobehavioral Reviews
– volume: 23
  start-page: 30
  year: 2013b
  end-page: 39
  article-title: Theta‐related gating cells in hippocampal formation: in vivo and in vitro study
  publication-title: Hippocampus
– volume: 39
  start-page: 993
  year: 2003
  end-page: 1008
  article-title: The role of theta‐range oscillations in synchronising and integrating activity in distributed mnemonic networks
  publication-title: Cortex
– volume: 43
  start-page: 67
  year: 1972
  end-page: 88
  article-title: Diencephalic and hippocampal mechanisms of motor activity in the rat: effects of posterior hypothalamic stimulation on behavior and hippocampal slow wave activity
  publication-title: Brain Research
– volume: 41
  start-page: 157
  year: 1993
  end-page: 208
  article-title: Extrinsic and intrinsic properties underlying oscillation and synchrony in limbic cortex
  publication-title: Progress in Neurobiology
– volume: 416
  start-page: 289
  year: 1987
  end-page: 300
  article-title: Intracellular theta‐rhythm generation in identified hippocampal pyramids
  publication-title: Brain Research
– volume: 15
  start-page: 827
  year: 2005
  end-page: 840
  article-title: Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory
  publication-title: Hippocampus
– volume: 1646
  start-page: 551
  year: 2016b
  end-page: 559
  article-title: Cell discharge correlates of posterior hypothalamic theta rhythm. Recipe for success in recording stable field potential
  publication-title: Brain Research
– volume: 422
  start-page: 277
  year: 1987
  end-page: 286
  article-title: State‐dependent spike train dynamics of hippocampal formation neurons: evidence for theta‐on and theta‐off cells
  publication-title: Brain Research
– volume: 1
  start-page: 381
  year: 1991
  end-page: 390
  article-title: In vivo intrahippocampal microinfusion of carbachol and bicuculline induces theta‐like oscillations in the septally deafferented hippocampus
  publication-title: Hippocampus
– volume: 187
  start-page: 353
  year: 1980
  end-page: 368
  article-title: Neuronal activity of the septum following various types of deafferentation
  publication-title: Brain Research
– volume: 163
  start-page: 107
  year: 2005
  end-page: 114
  article-title: Different systems in the posterior hypothalamic nucleus of rats control theta frequency and trigger movement
  publication-title: Behavioural Brain Research
– volume: 23
  start-page: 1811
  year: 2006
  end-page: 1818
  article-title: Firing cell repertoire during carbachol‐induced theta rhythm in rat hippocampal formation slices
  publication-title: European Journal of Neuroscience
– volume: 466
  start-page: 229
  year: 1988
  end-page: 232
  article-title: The development of carbachol‐induced EEG 'theta' examined in hippocampal formation slices
  publication-title: Brain Research
– volume: 26
  start-page: 1
  year: 1986
  end-page: 54
  article-title: The physiology and pharmacology of hippocampal formation theta rhythms
  publication-title: Prog Neurobiol
– volume: 91
  start-page: 540
  year: 2006
  end-page: 549
  article-title: Effect of ketamine on dendritic arbor development and survival of immature GABAergic neurons in vitro
  publication-title: Toxicological Sciences
– volume: 22
  start-page: 259
  year: 1998
  end-page: 273
  article-title: Anatomical, electrophysiological and pharmacological studies of ascending brainstem hippocampal synchronizing pathways
  publication-title: Neuroscience & Biobehavioral Reviews
– volume: 26
  start-page: 407
  year: 1969
  end-page: 418
  article-title: Hippocampal electrical activity and voluntary movement in the rat
  publication-title: Electroencephalography and Clinical Neurophysiology
– volume: 405
  start-page: 196
  year: 1987
  end-page: 198
  article-title: Carbachol‐induced EEG 'theta' activity in hippocampal brain slices
  publication-title: Brain Research
– volume: 140
  start-page: 1189
  year: 2006
  end-page: 1199
  article-title: Phase shift of subthreshold theta oscillation in hippocampal CA1 pyramidal cell membrane by excitatory synaptic inputs
  publication-title: Neuroscience
– volume: 67
  start-page: 301
  year: 1995
  end-page: 312
  article-title: The supramammillary nucleus: is it necessary for the mediation of hippocampal theta rhythm?
  publication-title: Neuroscience
– volume: 46
  start-page: 1140
  year: 1981
  end-page: 1159
  article-title: An analysis of ascending brain stem systems involved in hippocampal synchronization and desynchronization
  publication-title: Journal of Neurophysiology
– volume: 24
  start-page: 7
  year: 2014
  end-page: 20
  article-title: Atropine‐sensitive theta rhythm in the posterior hypothalamic area: in vivo and in vitro studies
  publication-title: Hippocampus
– ident: e_1_2_5_56_1
  doi: 10.1016/j.bbr.2005.04.004
– ident: e_1_2_5_5_1
  doi: 10.1016/0301-0082(86)90019-5
– ident: e_1_2_5_28_1
  doi: 10.1002/dneu.20632
– ident: e_1_2_5_32_1
  doi: 10.1111/j.1460-9568.2006.04679.x
– ident: e_1_2_5_13_1
  doi: 10.1002/hipo.20113
– ident: e_1_2_5_30_1
  doi: 10.1016/0165-3806(88)90048-X
– ident: e_1_2_5_41_1
  doi: 10.1016/j.pneurobio.2004.09.003
– volume: 81
  start-page: 893
  year: 1997
  ident: e_1_2_5_51_1
  article-title: Brainstem‐diencephalo‐septohippocampal systems controlling the theta rhythm of the hippocampus
  publication-title: Neuroscience
– ident: e_1_2_5_18_1
  doi: 10.1016/0304-3940(95)11581-G
– ident: e_1_2_5_6_1
  doi: 10.1016/0301-0082(93)90007-F
– ident: e_1_2_5_45_1
  doi: 10.1002/(SICI)1098-1063(1998)8:6<666::AID-HIPO9>3.0.CO;2-A
– ident: e_1_2_5_53_1
  doi: 10.1093/toxsci/kfj180
– ident: e_1_2_5_20_1
  doi: 10.1097/00001756-199107000-00012
– ident: e_1_2_5_49_1
  doi: 10.1016/0306-4522(86)90305-2
– ident: e_1_2_5_54_1
  doi: 10.1016/j.neuroscience.2006.02.085
– ident: e_1_2_5_2_1
  doi: 10.1016/0013-4694(72)90171-X
– ident: e_1_2_5_7_1
  doi: 10.1152/jn.1995.74.1.322
– ident: e_1_2_5_50_1
  doi: 10.1002/cne.903260408
– ident: e_1_2_5_31_1
  doi: 10.1016/0006-8993(87)91009-2
– ident: e_1_2_5_46_1
  doi: 10.1016/0306-4522(95)00045-K
– ident: e_1_2_5_29_1
  doi: 10.1002/(SICI)1098-1063(1997)7:2<204::AID-HIPO7>3.0.CO;2-M
– ident: e_1_2_5_47_1
  doi: 10.1016/0013-4694(69)90092-3
– ident: e_1_2_5_3_1
  doi: 10.1002/1096-9861(20010122)429:4<515::AID-CNE1>3.0.CO;2-2
– ident: e_1_2_5_26_1
  doi: 10.1016/S0149-7634(97)00015-8
– ident: e_1_2_5_8_1
  doi: 10.1016/S0149-7634(97)00013-4
– ident: e_1_2_5_22_1
  doi: 10.2170/jjphysiol.11.564
– ident: e_1_2_5_11_1
  doi: 10.1002/hipo.22612
– ident: e_1_2_5_25_1
  doi: 10.1523/JNEUROSCI.16-17-05547.1996
– ident: e_1_2_5_34_1
  doi: 10.1002/hipo.22050
– ident: e_1_2_5_42_1
  doi: 10.1016/j.jphysparis.2011.09.007
– ident: e_1_2_5_37_1
  doi: 10.1002/hipo.450050605
– ident: e_1_2_5_4_1
  doi: 10.1016/0006-8993(72)90275-2
– ident: e_1_2_5_40_1
  doi: 10.1007/s12264-014-1497-1
– ident: e_1_2_5_43_1
  doi: 10.1037/h0036397
– ident: e_1_2_5_15_1
  doi: 10.1002/hipo.450010406
– ident: e_1_2_5_12_1
  doi: 10.1016/j.brainres.2016.06.038
– ident: e_1_2_5_19_1
  doi: 10.1152/jn.1954.17.6.533
– ident: e_1_2_5_24_1
  doi: 10.1002/hipo.450030411
– ident: e_1_2_5_14_1
  doi: 10.1016/0006-8993(87)90934-6
– ident: e_1_2_5_9_1
  doi: 10.1152/jn.00315.2002
– ident: e_1_2_5_23_1
  doi: 10.1097/00001756-199111000-00023
– ident: e_1_2_5_10_1
  doi: 10.1111/j.1460-9568.2010.07545.x
– ident: e_1_2_5_44_1
  doi: 10.1016/0006-8993(95)00174-O
– ident: e_1_2_5_33_1
  doi: 10.1111/ejn.12091
– ident: e_1_2_5_52_1
  doi: 10.1016/0006-8993(80)90208-5
– ident: e_1_2_5_21_1
  doi: 10.1002/(SICI)1098-1063(1996)6:1<58::AID-HIPO10>3.0.CO;2-J
– ident: e_1_2_5_36_1
  doi: 10.1016/0014-4886(79)90076-1
– ident: e_1_2_5_16_1
  doi: 10.1016/0006-8993(89)91162-1
– ident: e_1_2_5_27_1
  doi: 10.1016/S0010-9452(08)70874-8
– ident: e_1_2_5_35_1
  doi: 10.1002/hipo.22167
– ident: e_1_2_5_39_1
  doi: 10.1002/hipo.450040408
– ident: e_1_2_5_17_1
  doi: 10.1007/BF00228702
– ident: e_1_2_5_38_1
  doi: 10.1016/0006-8993(87)90909-7
– ident: e_1_2_5_48_1
  doi: 10.1152/jn.1981.46.5.1140
– ident: e_1_2_5_55_1
  doi: 10.1002/hipo.10111
SSID ssj0053260
Score 2.275861
Snippet ABSTRACT Theta rhythms have been recorded from rat brain slices of the posterior hypothalamic area (PHa), including the supramammillary and posterior...
Theta rhythms have been recorded from rat brain slices of the posterior hypothalamic area (PHa), including the supramammillary and posterior hypothalamic...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1049
SubjectTerms Animals
Animals, Newborn
Brain - growth & development
Brain slice preparation
Electric Stimulation
extracellular recordings
Hippocampus - physiology
Hypothalamus
Hypothalamus, Posterior - growth & development
in vitro preparations
Male
Nervous system
Neurons - physiology
Neurosciences
Rats, Wistar
Rodents
supramammillary nucleus
theta oscillations
Theta Rhythm - physiology
Theta rhythms
Title Postnatal Development of the Posterior Hypothalamic Theta Rhythm and Local Cell Discharges in Rat Brain Slices
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdneu.22628
https://www.ncbi.nlm.nih.gov/pubmed/30027636
https://www.proquest.com/docview/2127906151
https://www.proquest.com/docview/2073325011
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5VPXHhVR4pBU0FQgJp0-yu7exKXPpUhKCHQKRe0Mr22mpF6lTN5hB-PTPeZNsCQoLbSp59eWY8n-3xNwBvaiHqtJY6qSk-0ARFqsSUnLbj_cCWFI9yyQecP5-q0UR8PJNnG_BhfRam5YfoFtzYM-J4zQ6uzXzvhjS0Dm7RJ_CQ8UlfTtZiRDTuuKMk4ZJBu6VMLi9k2nGTZns3t96NRr9BzLuINYackwfwbf2xbabJ9_6iMX374xcex__9m4dwf4VFcb81nkew4cJj2NoPNA-_XOJbjNmhcdl9CwJX9Q281oO38oxw5pEQJHIjmfLsGkfLK9K9nnKZeyQbbDSOz5fN-SXqUOMnjpx46Kb0lIt5ZGlyc7wIONYNHnC1Cvwy5aHrCUxOjr8ejpJVrYbEMl9OYg0NVMoaI3WqZWZsVvuyULZ0zhXO61SZMmN6Le-0yLwd1MLa1Go1HObeiyJ_CpthFtxzQOmEE1qmVngjhoUhmUINhJBa5soNVQ_erXVW2RWROdfTmFYtBXNWcWdWsTN78LqTvWrpO_4otbNWfbVy4XnF1PdlBHw92O2ayfl4R0UHN1uQDJe8JBCZksyz1mS61-Q846c-6cH7qPi_vL86Oj2exKvtfxF-AfcIvhXtycgd2GyuF-4lQaTGvIqu8BNiwAzU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbG9gAvwBiMwhg3gZBAStcktps8jv1QGV0fyirtLbIdW5vo3GlNH8pfz52TZQwQ0niL5Eus2He-7-zzd4y9Lzkv41KoqET_gAGKkJHOKW3HuZ7J0R-lgi44n4zkYMKPz8RZk5tDd2Fqfoh2w40sI6zXZOC0Ib17yxpaervoInpIsgdsjUp6h4hq3LJHCUQmvfpQGY2ei7hlJ012b9-964_-AJl3MWtwOkdP6sqq88BVSLkm37uLSnfNj9-YHP_7f56yxw0chb1af9bZivXP2Maex1D8cgkfICSIhp33DeapsK-n7R74JdUIZg4QRAI1ojbPrmGwvMLpV1OqdA-ohpWC8fmyOr8E5UsYkvOEfTvFr1zMA1GTncOFh7Gq4DMVrIBvU1q9nrPJ0eHp_iBqyjVEhihzIqNxrZJGa6FiJRJtktLlmTS5tTazTsVS5wkxbDmreOJMr-TGxEbJfj91jmfpC7bqZ96-ZCAst1yJ2HCneT_TKJPJHudCiVTavuywjzeTVpiGy5xKakyLmoU5KWgwizCYHfaulb2qGTz-KrV1M_dFY8Xzgtjv84D5OmynbUb7o0MV5e1sgTJU9RJxZIwym7XOtN2kFPTjmHTYpzDz_-i_OBgdTsLTq_sIv2UPB6cnw2L4ZfT1NXuEaC6rL0pusdXqemHfIGKq9Hawi58c5hDv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIiEuvMojUMAIhATSpvuwnV2JS2kaBSgRCkTqBa1sr61WpE7UbA7h1zPjTbYUEBLcVvLsyzPj-WyPvwF4UXFeJZVQUYXxAScoQka6oLQd52JTYDzKBB1w_jiSwwl_fyyOt-DN5ixMww_RLriRZ4Txmhx8Xrm9C9LQyttlF8FDml-Bq1zGOdl0f9ySRwkEJnGzp4w-z0XSkpOmexf3Xg5Hv2HMy5A1xJzBTfi6-dom1eRbd1nrrvn-C5Hj__7OLbixBqNsv7Ge27Bl_R3Y2fc4ET9bsZcspIeGdfcd8FTW19NiD_sp0YjNHEMIyagRbXl2zoarOSpfTanOPUMjrBUbn6zqkzOmfMWOKHSyAzvFp5wuAk2TXbBTz8aqZm-pXAX7PKWx6y5MBodfDobRulhDZIgwJzIaRypptBYqUSLVJq1ckUtTWGtz61QidZESv5aziqfOxBU3JjFK9nqZczzP7sG2n3n7AJiw3HIlEsOd5r1co0wuY86FEpm0PdmBVxudlWbNZE4FNaZlw8GcltSZZejMDjxvZecNf8cfpXY3qi_XPrwoifu-CIivA8_aZvQ-2lJR3s6WKEM1LxFFJihzvzGZ9jUZTfmxTzrwOij-L-8v-6PDSbh6-C_CT-Hap_6gPHo3-vAIriOUy5tTkruwXZ8v7WOES7V-ErziB_8ID6c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Postnatal+Development+of+the+Posterior+Hypothalamic+Theta+Rhythm+and+Local+Cell+Discharges+in+Rat+Brain+Slices&rft.jtitle=Developmental+neurobiology+%28Hoboken%2C+N.J.%29&rft.au=Caban%2C+Bartosz&rft.au=Staszelis%2C+Agata&rft.au=Kazmierska%2C+Paulina&rft.au=Kowalczyk%2C+Tomasz&rft.date=2018-11-01&rft.eissn=1932-846X&rft.volume=78&rft.issue=11&rft.spage=1049&rft_id=info:doi/10.1002%2Fdneu.22628&rft_id=info%3Apmid%2F30027636&rft.externalDocID=30027636
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-8451&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-8451&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-8451&client=summon