Postnatal Development of the Posterior Hypothalamic Theta Rhythm and Local Cell Discharges in Rat Brain Slices
ABSTRACT Theta rhythms have been recorded from rat brain slices of the posterior hypothalamic area (PHa), including the supramammillary and posterior hypothalamic nuclei. Additionally, in numerous studies theta‐related neurons were identified in the PHa according to the classification of Bland and C...
Saved in:
Published in | Developmental neurobiology (Hoboken, N.J.) Vol. 78; no. 11; pp. 1049 - 1063 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.11.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1932-8451 1932-846X 1932-846X |
DOI | 10.1002/dneu.22628 |
Cover
Loading…
Summary: | ABSTRACT
Theta rhythms have been recorded from rat brain slices of the posterior hypothalamic area (PHa), including the supramammillary and posterior hypothalamic nuclei. Additionally, in numerous studies theta‐related neurons were identified in the PHa according to the classification of Bland and Colom (Progress in Neurobiology, 41, 157–208, 1993). It is currently widely accepted that the PHa contributes to the process of HPC theta frequency programming at least in certain behavioral states. The postnatal development of the HPC and its ability to generate theta has also been a subject of studies. Specifically, it was found that theta oscillations are present in the HPC of 8–10 days old rat pups and turn into a well‐synchronized and high‐amplitude activity in the following few days. In our current study, we therefore focused on the postnatal development of cholinergically‐induced theta rhythm and theta‐related neuronal activity in PHa slices obtained from 8 to 24 days old rat pups. Theta activity was observed in the PHa preparations at the age of 8–10 days and then progressively increased its probability of occurrence, amplitude and synchrony up to the age of 22–24 days when it reached a plateau phase. A steady increase in the number of recorded neurons correlated with local theta oscillations was also observed. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1932-8451 1932-846X 1932-846X |
DOI: | 10.1002/dneu.22628 |