Multiple insecticide resistance target sites in adult field strains of An. gambiae (s.l.) from southeastern Senegal

High coverage of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the cornerstones of vector control strategy in Senegal where insecticide resistance by the target vectors species is a great of concern. This study explores insecticide susceptibility profile and target-si...

Full description

Saved in:
Bibliographic Details
Published inParasites & vectors Vol. 13; no. 1; p. 567
Main Authors Diouf, El Hadji, Niang, El Hadji Amadou, Samb, Badara, Diagne, Cheikh Tidiane, Diouf, Mbaye, Konaté, Abdoulaye, Dia, Ibrahima, Faye, Ousmane, Konaté, Lassana
Format Journal Article
LanguageEnglish
Published England BioMed Central 11.11.2020
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:High coverage of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the cornerstones of vector control strategy in Senegal where insecticide resistance by the target vectors species is a great of concern. This study explores insecticide susceptibility profile and target-site mutations mechanisms within the Anopheles gambiae complex in southeastern Senegal. Larvae of Anopheles spp. were collected in two sites from southeastern Senegal Kedougou and Wassadou/Badi in October and November 2014, and reared until adult emergence. Wild F adult mosquitoes were morphologically identified to species. Susceptibility of 3-5-day-old An. gambiae (s.l.) samples to 11 insecticides belonging to the four insecticide classes was assessed using the WHO insecticide susceptibility bioassays. Tested samples were identified using molecular techniques and insecticide resistance target-site mutations (kdr, ace-1 and rdl) were determined. A total of 3742 An. gambiae (s.l.) were exposed to insecticides (2439 from Kedougou and 1303 from Wassadou-Badi). Tests with pyrethroid insecticides and DDT showed high level of resistance in both Kedougou and Wassadou/Badi. Resistance to pirimiphos-methyl and malathion was not detected while resistance to bendoicarb and fenitrothion was confirmed in Kedougou. Of the 745 specimens of An. gambiae (s.l.) genotyped, An. gambiae (s.s.) (71.6%) was the predominant species, followed by An. arabiensis (21.7%), An. coluzzii (6.3%) and hybrids (An. gambiae (s.s.)/An. coluzzii; 0.4%). All target site mutations investigated (Vgsc-1014F, Vgsc-1014S, Ace-1 and Rdl) were found at different frequencies in the species of the Anopheles gambiae complex. Vgsc-1014F mutation was more frequent in An. gambiae (s.s.) and An. coluzzii than An. arabiensis. Vgsc-1014S was present in An. gambiae (s.l.) populations in Wassadou but not in Kedougou. Ace-1 and rdl mutations were more frequent in An. gambiae (s.s.) in comparison to An. arabiensis and An. coluzzii. Resistance to all the four insecticide classes tested was detected in southeastern Senegal as well as all target site mutations investigated were found. Data will be used by the national Malaria Control Programme.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1756-3305
1756-3305
DOI:10.1186/s13071-020-04437-z