Self-supported 3D layered zinc/nickel metal-organic-framework with enhanced performance for supercapacitors

Metal-organic frameworks (MOFs) have been used as a novel electrode material in terms of energy storage and conversion, owning to their stable porous architectures and exceptionally specific surface area. In this study, we have synthesized Ni-MOF and bimetallic Zn/Ni-MOF via a facile one-step hydrot...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science. Materials in electronics Vol. 30; no. 19; pp. 18101 - 18110
Main Authors Zhang, Xiaolong, Sui, Yanwei, Wei, Fuxiang, Qi, Jiqiu, Meng, Qingkun, Ren, Yaojian, He, Yezeng
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Metal-organic frameworks (MOFs) have been used as a novel electrode material in terms of energy storage and conversion, owning to their stable porous architectures and exceptionally specific surface area. In this study, we have synthesized Ni-MOF and bimetallic Zn/Ni-MOF via a facile one-step hydrothermal method. Comparing with the pure Ni-MOF, the as-prepared Zn/Ni-MOF exhibits a superior energy storage capacity (878 F g −1 at 1 A g −1 ), better rate performance (536 F g −1 at 10 A g −1 ) and cycling stability (72% retention over 2500 charge/discharge cycles). In addition, the assembled asymmetric supercapacitor based on the Zn/Ni-MOF-1/NF//RGO shows a remarkable supercapacitive performance with the energy density of 30.51 Wh kg −1 at the power density of 800 W kg −1 , and a superior cycling stability of 80.3% retention over 5000 cycles.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0957-4522
1573-482X
DOI:10.1007/s10854-019-02163-6