Construction of an irreversible allergic rhinitis-induced olfactory loss mouse model

Clinical data show that part of patients with sinonasal diseases suffered from olfactory dysfunction, especially with allergic rhinitis (AR) and chronic rhinosinusitis (CRS). However, the mechanisms responsible for AR-induced olfactory loss are still largely unknown. Because of the difficulty to obt...

Full description

Saved in:
Bibliographic Details
Published inBiochemical and biophysical research communications Vol. 513; no. 3; pp. 635 - 641
Main Authors Liang, Caiquan, Yang, Zixuan, Zou, Qingyun, Zhou, Mengxia, Liu, Huanhai, Fan, Jingping
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 04.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Clinical data show that part of patients with sinonasal diseases suffered from olfactory dysfunction, especially with allergic rhinitis (AR) and chronic rhinosinusitis (CRS). However, the mechanisms responsible for AR-induced olfactory loss are still largely unknown. Because of the difficulty to obtain human olfactory mucosa, an AR-induced olfactory loss animal model needs to be constructed to clarify the mechanism. The AR mouse model was induced by intraperitoneal sensitizing with ovalbumin (OVA) followed by intranasal challenge lasted from 1 to 12 weeks. For groups with recovery, mice were housed for another 4-week long without any treatment after the last intranasal challenge. Olfactory function, olfactory receptor neurons (ORNs) density and leukocytes infiltration were examined at different time points. Olfactory loss occurs immediately after 1-week intranasal challenge and deteriorates almost to anosmia after 8th week, and after that olfactory loss become irreversible. Nasal inflammation induces significant infiltration of leukocytes into olfactory epithelium (OE), which negatively correlated with the density of ORNs and mouse olfaction in a time dependent manner. The neutrophilic subtype dominates in number amongst the total infiltrated leukocytes, indicating its pivotal role in nasal inflammation-induced olfactory dysfunction. In this study, we constructed a persistent AR-induced olfactory loss mouse model, losing the ability to recover from dysfunction if the disease duration more than eight weeks, which implies that timely treatments are necessary. Meanwhile, this mouse model could provide an easy and reliable system to clarify the mechanisms of AR-induced irreversible olfactory dysfunction. •Constructed a persistent allergic rhinitis-induced olfactory loss mouse model.•CD45+ Leukocytes accumulation may contribute to irreversible ORNs loss.•Apoptotic neutrophils is positively correlated with olfactory loss.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2019.03.110