Using quasi-DNS to investigate the deposition of elongated aerosol particles in a wavy channel flow
In gas-cooled high temperature reactors, the diffusion of the fission products into the graphite matrix causes a radioactive contamination of the carbonaceous dust. The contaminated graphite aerosol particles often exhibit large aspect ratios and deposit in complex geometries, which hinders a detail...
Saved in:
Published in | Computers & fluids Vol. 124; pp. 78 - 85 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In gas-cooled high temperature reactors, the diffusion of the fission products into the graphite matrix causes a radioactive contamination of the carbonaceous dust. The contaminated graphite aerosol particles often exhibit large aspect ratios and deposit in complex geometries, which hinders a detailed experimental investigation. The use of quasi Direct Numerical Simulation (quasi-DNS) to simulate the turbulent flow in nuclear reactors has seen an increased interest over the last few years. The capabilities of a quasi-DNS to simulate the transport and the deposition of elongated particles in a wavy channel flow are presently tested. It is shown that quasi-DNS effectively predicts deposition and that, unlike the deposition in a plane channel flow, the particle aspect ratio has no significant effect on the overall deposition rate in a wavy channel. It is suggested that in numerical studies of particle deposition on a significantly roughened channel, the particle can be assumed to be spherical without affecting the results of the deposition study. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0045-7930 |
DOI: | 10.1016/j.compfluid.2015.10.012 |