Extracellular calcium stimulates osteogenic differentiation of human adipose-derived stem cells by enhancing bone morphogenetic protein-2 expression

[Display omitted] Bone morphogenetic protein-2 (BMP-2) promotes the differentiation of non-osteogenic mesenchymal cells to osteogenic cells. In this study, we isolated human adipose-derived stem cells (hASCs) and investigated the effects of recombinant human BMP-2 (rhBMP-2) and extracellular Ca2+ co...

Full description

Saved in:
Bibliographic Details
Published inCell calcium (Edinburgh) Vol. 83; p. 102058
Main Authors Yanai, Risa, Tetsuo, Fumi, Ito, Shinichi, Itsumi, Momoe, Yoshizumi, Junko, Maki, Tomoko, Mori, Yoshihide, Kubota, Yasutaka, Kajioka, Shunichi
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] Bone morphogenetic protein-2 (BMP-2) promotes the differentiation of non-osteogenic mesenchymal cells to osteogenic cells. In this study, we isolated human adipose-derived stem cells (hASCs) and investigated the effects of recombinant human BMP-2 (rhBMP-2) and extracellular Ca2+ concentration ([Ca2+]out) on the osteogenic differentiation of hASCs. rhBMP-2 promoted calcium deposition in hASCs and stimulated the mRNA expressions of six proteins known to be involved in the osteogenic differentiation of hASCs: Runx2, osterix, alkaline phosphatase, osteonectin, bone sialoprotein and osteocalcin. Elevation of [Ca2+]out enhanced the level of alkaline phosphatase enzyme, increased the mRNA expressions of Runx2 and osteocalcin and induced the expressions of BMP-2 mRNA and protein in hASCs. Elevation of [Ca2+]out transiently increased the intracellular Ca2+ concentration ([Ca2+]in) due to activation of the calcium-sensing receptor (CaSR). The Ca2+-induced expressions of BMP-2 mRNA and protein were inhibited by the calmodulin antagonist, W-7. Furthermore, elevation of [Ca2+]out decreased the cytoplasmic level of phosphorylated nuclear factor of activated T-cell-2 (NFAT-2) and increased the nuclear level of dephosphorylated NFAT2. Taken together, these results suggest that rhBMP-2 promotes the osteogenic differentiation of hASCs. Furthermore, an increase in [Ca2+]out enhances the expression of BMP-2 via activation of the CaSR, elevation of [Ca2+]in and stimulation of Ca2+/calmodulin-dependent NFAT-signaling pathways.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0143-4160
1532-1991
DOI:10.1016/j.ceca.2019.102058