Transmission Gates Combined With Level-Restoring CMOS Gates Reduce Glitches in Low-Power Low-Frequency Multipliers

Various 16-bit multiplier architectures are compared in terms of dissipated energy, propagation delay, energy-delay product (EDP), and area occupation, in view of low-power low-voltage signal processing for low-frequency applications. A novel practical approach has been set up to investigate and gra...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on very large scale integration (VLSI) systems Vol. 16; no. 7; pp. 830 - 836
Main Authors Carbognani, F., Buergin, F., Felber, N., Kaeslin, H., Fichtner, W.
Format Journal Article
LanguageEnglish
Published Piscataway, NJ IEEE 01.07.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Various 16-bit multiplier architectures are compared in terms of dissipated energy, propagation delay, energy-delay product (EDP), and area occupation, in view of low-power low-voltage signal processing for low-frequency applications. A novel practical approach has been set up to investigate and graphically represent the mechanisms of glitch generation and propagation. It is found that spurious activity is a major cause of energy dissipation in multipliers. Measurements point out that, because of its shorter full-adder chains, the Wallace multiplier dissipates less energy than other traditional array multipliers (8.2 mu W/MHz versus 9.6 mu W/MHz for 0.18mum CMOS technology at 0.75 V). The benefits of transistor sizing are also evaluated (Wallace including minimum-size transistors dissipates 6.2 muW/MHz). By combining transmission gates with static CMOS in a Wallace architecture, a new approach is proposed to improve the energy-efficiency further (4.7 muW/MHz), beyond recently published low-power architectures. The innovation consists in suppressing glitches via resistance-capacitance low-pass filtering, while preserving unaltered driving capabilities. The reduced number of V dd -to-ground paths also contributes to a significant decrease of static consumption.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2008.2000457